20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

TELEPHONE: (973) 376-2922

Unit

(212) 227-6005 FAX: (973) 376-8960

3N211 3N212 3N213

TO-72

DUAL-GATE MOSFET VHF AMPLIFIER

N-CHANNEL - DEPLETION

BARVISH ISS DATINGS

Rating	Symbol	3N211 3N212	3N213	Unit
Drain-Source Voltage	VDS	27	35	∨d¢.
Drain-Gate Voltage	VDG1 VDG2	35 35	40 40	∨d¢
Drain Current	ΙD	50		m Adc
Gate Current	IG1 IG2	± 10 ± 10		mAdc
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	360 2.4		mW mW/*C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 8.0		Watt mW/°C
Lead Temperature, 1/16" From Seated Surface for 10 seconds	TL	300		°C
Junction Temperature Range	Tj	- 65 to + 175		۳C
Storage Temperature Range	Tstg	- 65 to + 175		°C

Symbol

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.) Characteristic

Characteristic			.,,,		
OFF CHARACTERISTICS				,	
Drain-Source Breakdown Voltage (ID = 10 μAdc, VG1S = VG2S = -4.0 Vdc)	3N211,212 3N213	V(BR)DSX	25 30	<u>-</u>	Vdc
instantaneous Drain-Source Breakdown Voltage)(1) (ID = 10 μAdc, VG1S = VG2S = -4.0 Vdc)	3N211,212 3N213	V(BR)DSX	27 35	_	Vdc
Gate 1-Source Breakdown Voltage(2) { G1 = ±10 mAdc, VG2S = VpS = 0}		V(BR)G1SO	± 6.0	_	Vdc
Gate 2-Source Breakdown Voltage(2) (IG2 = ±10 mAdc, VG1S = VDS = 0)		V(BR)G2SO	± 6.0	-	Vdc
Gate 1 Leakage Current (VG1S = ±5.0 Vdc, VG2S = VDS = 0) (VG1S = -5.0 Vdc, VG2S = VDS = 0, TA = 150°C)		IG1SS	_	± 10 - 10	nAdc µAdc
Gate 2 Leakage Current (VG2S = ±5.0 Vdc, VG1S = VDS = 0) (VG2S = -5.0 Vdc, VG1S = VDS = 0, TA = 150°C)		lG2SS		± 10 10	nAdc µAdc
Gate 1 to Source Cutoff Voltage (VDS = 15 Vdc, VG2S = 4.0 Vdc, ID = 20 μAdc)	3N211,213 3N212	VG1S(off)	- 0.5 - 0.5	- 5.5 - 4.0	Vdc
Gate 2 to Source Cutoff Voltage (VDS = 15 Vdc, VG1S = 0, ID = 20 μAdc)	3N211 3N212,213	VG2S(off)	- 0.2 - 0.2	- 2.5 - 4.0	Vdc
ON CHARACTERISTICS					-p
Zero-Gate-Voltage Drain Current(3) (Vps = 15 Vdc, Vg1s = 0, Vg2s = 4.0 Vdc)		loss	6.0	40	mAdc
SMALL-SIGNAL CHARACTERISTICS				,	
Forward Transfer Admittence(4) (VDS = 15 Vdc, VG2S = 4.0 Vdc, VG1S = 0, f = 1.0 kHz)	3N211,212 3N213	ÌYfs	17 15	40 35	mmhos
Reverse Transfer Capacitance (Vps = 15 Vdc, V _{G2S} = 4.0 Vdc, I _D = 10 mAdc, f = 1.0 MHz)		C _{rss}	0.005	0.05	ρF
FUNCTIONAL CHARACTERISTICS					
Noise Figure (VDD = 18 Vdc, VGG = 7.0 Vdc, f = 200 MHz) (VDD = 24 Vdc, VGG = 8.0 Vdc, f = 45 MHz)	3N211 3N211,13	ŊF		3.5 4.0	d₿

ELECTRICAL CHARACTERISTICS

(TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Common Source Power Gain		Gps			d 8
(VDD = 18 Vdc, VGG = 7.0 Vdc, f = 200 MHz)	3N211	"]	24	35	
(VDD = 24 Vdc, VGG = 6.0 Vdc, f = 45 MHz)	3N211	1	29	37	
(Vpp = 24 Vdc, Vgg = 6.0 Vdc, f = 45 MHz)	3N213		27	35	
(VDD = 18 Vdc, fLO = 245 MHz, fRF = 200 MHz)	3N212	G _c (6)	21	28	
Bandwidth		BW			MHz
$(V_{DD} = 18 \text{ Vdc}, V_{GG} = 7.0 \text{ Vdc}, f = 200 \text{ MHz})$	3N211	1 1	5.0	12	
(Vop = 18 Vdc, fLO = 245 MHz, fgg = 200 MHz)	3N212		4.0	7.0	
(VDD = 24 Vdc, VGG = 6.0 Vdc, f = 45 MHz)	3N211,213		3.5	6.0	
Gain Control Gate-Supply Voltage(5)		VGG(GC)			Vdc
$(V_{DD} = 18 \text{ Vdc}, \Delta G_{DS} = -30 \text{ dB}, f = 200 \text{ MHz})$	3N211	3,755,		- 2.0	
$(V_{DD} = 24 \text{ Vdc}, \Delta G_{DS} = -30 \text{ dB}, f = 45 \text{ MHz})$	2N211,213		_	± 1.0	

⁽¹⁾ Measured after five seconds of applied voltage.

(2) All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate-voltage limiting network is functioning properly.

(3) Pulse Test: Pulse Width = 300 µs, Duty Cycle < 2.0%.

(4) This perameter must be measured with bies voltages applied for less than 5 seconds to avoid overheating. The signal is applied to gate

with gate 2 at ac ground.
 ΔG_{ps} is defined as the change in G_{ps} from the value at V_{GG} = 7.0 Volts (3N211) and V_{GG} = 6.0 Volts (3N213).
 Power Gain Conversion. Amplitude at input from local oscillator is adjusted for maximum G_c.