7500 PIXELS $\times 3$ COLOR CCD LINEAR IMAGE SENSOR

DESCRIPTION

The μ PD3768 is a high-speed and high sensitive color CCD (Charge Coupled Device) linear image sensor which changes optical images to electrical signal and has the function of color separation.

The μ PD3768 has 3 rows of 7500 pixels, and it is a 2-output/color type CCD sensor with 2 rows/color of charge transfer register, which transfers the photo signal electrons of 7500 pixels separately in odd and even pixels. Therefore, it is suitable for $600 \mathrm{dpi} / \mathrm{A} 3$ high-speed color digital copiers, color scanners and so on.

FEATURES

- Valid photocell $: 7500$ pixels $\times 3$
- Photocell pitch $: 9.325 \mu \mathrm{~m}$
- Line spacing $\quad: 37.3 \mu \mathrm{~m}$ (4 lines) Red line - Green line, Green line - Blue line
- Color filter : Primary colors (red, green and blue), pigment filter (with light resistance $10^{7} \mathrm{~lx} \cdot$ hour)
- Resolution : $24 \mathrm{dot} / \mathrm{mm}$ A3 $(297 \times 420 \mathrm{~mm})$ size (shorter side)
- Drive clock level : CMOS output under 5 V operation
- Data rate $\quad: 44 \mathrm{MHz}$ MAX. ($22 \mathrm{MHz} / 1$ output)
- Output type $: 2$ outputs in phase/color
- Power supply : +10 V
- On-chip circuits : Reset feed-through level clamp circuits

Voltage amplifiers

ORDERING INFORMATION

Part Number	Package
μ PD3768D	CCD linear image sensor 36-pin ceramic DIP (CERDIP) $(15.24 \mathrm{~mm}(600))$

[^0]
BLOCK DIAGRAM

PIN CONFIGURATION (Top View)

CCD linear image sensor 36-pin ceramic DIP (CERDIP) (15.24 mm (600))

- μ PD3768D

PHOTOCELL STRUCTURE DIAGRAM

PHOTOCELL ARRAY STRUCTURE DIAGRAM (Line spacing)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Ratings	Unit
Output drain voltage	V_{OD}	-0.3 to +12	V
Shift register clock voltage	$\mathrm{V}_{\phi 1}, \mathrm{~V}_{\phi 2}$	-0.3 to +8	V
Last gate shift register clock voltage	$\mathrm{V}_{\phi 2 \mathrm{~L}}$	-0.3 to +8	V
Reset gate clock voltage	$\mathrm{V}_{\phi \mathrm{R}}$	-0.3 to +8	V
Clamp clock voltage	$\mathrm{V}_{\phi \mathrm{CP}}$	-0.3 to +8	V
Transfer gate clock voltage	$\mathrm{V}_{\phi \text { TG1 }}$ to $\mathrm{V}_{\phi \text { TG3 }}$	-0.3 to +8	V
Operating ambient temperature	T_{A}	-25 to +60	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

RECOMMENDED OPERATING CONDITIONS ($\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit
Output drain voltage	Vod	9.5	10.0	10.5	V
Shift register clock high level	$\mathrm{V}_{\phi 1 \mathrm{H},} \mathrm{V}_{\phi 2 \mathrm{H}}$	4.5	5.0	5.5	V
Shift register clock low level	$\mathrm{V}_{\phi 1 \mathrm{~L}}, \mathrm{~V}_{\phi 2 \mathrm{~L}}$	-0.3	0	+0.5	V
Last gate shift register clock high level	$\mathrm{V}_{\text {¢ 2L }}$	4.5	5.0	5.5	V
Last gate shift register clock low level	$\mathrm{V}_{\text {¢ 2LL }}$	-0.3	0	+0.5	V
Reset gate clock high level	$\mathrm{V}_{\phi \text { RH }}$	4.5	5.0	5.5	V
Reset gate clock low level	$\mathrm{V}_{\phi \text { RL }}$	-0.3	0	+0.5	V
Clamp clock high level	V_{ϕ} CPH	4.5	5.0	5.5	V
Clamp clock low level	V_{ϕ} CPL	-0.3	0	+0.5	V
Transfer gate clock high level	$\mathrm{V}_{\phi \text { TG1 }}$ to $\mathrm{V}_{\text {¢TG3 }}$	4.5	$\mathrm{V}_{\phi \text { 1 }} \mathrm{Hote}^{\text {No }}$	$\mathrm{V}_{\phi \text { 1 }}{ }^{\text {Note }}$	V
Transfer gate clock low level	$\mathrm{V}_{\text {¢ }{ }_{\text {TG1L }} \text { to }} \mathrm{V}_{\text {¢ }}$ TG3L	-0.3	0	+0.5	V
Data rate	$2 f_{\phi} \mathrm{R}$	1	2	44	MHz

Note When Transfer gate clock high level ($\mathrm{V}_{\phi \text { TG1H }}$ to $\mathrm{V}_{\phi \text { TG3H }}$) is higher than Shift register clock high level ($\mathrm{V}_{\phi 1 \mathrm{H}}$), Image lag can increase.

ELECTRICAL CHARACTERISTICS

$\binom{\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Vod}=10 \mathrm{~V}, \mathrm{f}_{\phi \mathrm{R}}=1 \mathrm{MHz}$, data rate $=2 \mathrm{MHz}$, storage time $=10 \mathrm{~ms}$, input signal clock $=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p},}}{$ light source (except Response1) $: 2950 \mathrm{~K}$ halogen lamp $+\mathrm{CM}-500 \mathrm{~S}$ (infrared cut filter, $\mathrm{t}=1 \mathrm{~mm}$) }

Parameter		Symbol	Test Conditions	Min.	Typ.	Max.	Unit
Saturation voltage		$V_{\text {sat }}$		1.5	2.0	-	V
Saturation exposure	Red	SER	2950 K halogen lamp + CM-500S	-	0.14	-	Ix*s
	Green	SEG		-	0.13	-	Ix*s
	Blue	SEB		-	0.26	-	Ix*s
Photo response non-uniformity		PRNU	Vout $=1.0 \mathrm{~V}$	-	6.0	18.0	\%
Photo response non-uniformity at low illumination		PRNU2	Vout $=0.1 \mathrm{~V}$	-	6.0	18.0	\%
Average dark signal		ADS	Light shielding, data rate $=2 \mathrm{MHz}$, storage time $=10 \mathrm{~ms}$	-	1.0	5.0	mV
Dark signal non-uniformity		DSNU	Light shielding, data rate $=2 \mathrm{MHz}$, storage time $=10 \mathrm{~ms}$	-	3.0	12.0	mV
Power consumption		Pw		-	700	900	mW
Output impedance		Zo		-	0.2	0.4	$\mathrm{k} \Omega$
Response1	Red	RR	3200 K halogen lamp + C-500S	15.4	22.0	28.6	V/Ix*s
	Green	Rg_{g}		12.6	18.0	23.4	V/Ix*s
	Blue	Rв		5.6	8.0	10.4	V/Ix*s
Response2	Red	RR	2950 K halogen lamp + CM-500S	9.8	14.0	18.2	V/Ix*s
	Green	Rg		10.7	15.3	19.9	V/Ix 0 s
	Blue	Rв		5.3	7.6	9.9	V/Ix 0 s
Image lag		IL	Vout $=500 \mathrm{mV}$	-	40	80	mV
Image lag color difference		IL-DIF	Vout $=500 \mathrm{mV}$	-	5	20	mV
Image lag O/E		IL-O/E	Vout $=500 \mathrm{mV}$	-	10	30	mV
Offset level		Vos		3.8	4.5	5.2	V
Output fall delay time ${ }^{\text {Note }}$		td		-	14	-	ns
Register imbalance		RI	Vout $=1.0 \mathrm{~V}$	-	0	5	\%
Total transfer efficiency		TTE	Vout $=1.0 \mathrm{~V}, \mathrm{f}_{\phi} \mathrm{R}=22 \mathrm{MHz}$	94	98	-	\%
Response peak	Red			-	630	-	nm
	Green			-	540	-	nm
	Blue			-	445	-	nm
Dynamic range		DR1	$\mathrm{V}_{\text {sat }} /$ DSNU	-	666	-	times
		DR2	$\mathrm{V}_{\text {sat }} / \sigma$ dark	-	870	-	times
Reset feed-through noise		RFTN	Light shielding	-1000	-200	+500	mV
Light shielding random noise		σ dark	Bit clamp, $\mathrm{t} 17=10 \mathrm{~ns}$	-	2.3	-	mV

Note t_{d} is defined as periods from 10% of $\phi 2 \mathrm{~L}$ to 10% of Vout1 to Vout6 (refer to APPLICATION CURCUIT EXAMPLE).

INPUT PIN CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{VoD}=10 \mathrm{~V}\right.$)

Parameter	Symbol	Pin	Pin No.	Min.	Typ.	Max.	Unit
Shift register clock pin capacitance	$\mathrm{C}_{\phi 1}$	$\phi 1$	9	-	330	450	pF
			13	-	330	450	pF
			23	-	330	450	pF
	$\mathrm{C}_{\phi 2}$	$\phi 2$	14	-	330	450	pF
			24	-	330	450	pF
			28	-	330	450	pF
Last stage shift register clock pin capacitance	C_{ϕ} L	$\phi 2 \mathrm{~L}$	8	-	10	20	pF
			29	-	10	20	pF
Reset gate clock pin capacitance	$\mathrm{C}_{\phi} \mathrm{R}$	$\phi \mathrm{R}$	7	-	10	20	pF
Clamp clock pin capacitance	$\mathrm{C}_{\phi} \mathrm{CP}$	$\phi \mathrm{CP}$	30	-	10	20	pF
Transfer gate clock pin capacitance	$\mathrm{C}_{\phi \text { TG }}$	ϕ TG1	22	-	100	150	pF
		ϕ TG2	21	-	100	150	pF
		ϕ TG3	15	-	100	150	pF

TIMING CHART 1 (Bit clamp mode, for each color)

Note Set the $\phi \mathrm{R}$ and $\phi \mathrm{CP}$ pulse to low level during this period.

TIMING CHART 2 (Bit clamp mode, for each color)

TIMING CHART 3 (Line clamp mode, for each color)

Note Set the $\phi \mathrm{R}$ and $\phi \mathrm{CP}$ pulse to low level during this period.

TIMING CHART 4 (Line clamp mode, for each color)

TIMING CHART 5 (Bit clamp mode, line clamp mode, for each color)

Note Set the $\phi \mathrm{R}$ and $\phi \mathrm{CP}$ pulse to low level during this period.

$\phi 1, \phi 2$ cross points

$\phi 1, \phi 2 L$ cross points

$\phi 1$
$\phi 2 \mathrm{~L}$

Remark Adjust cross points ($\phi 1, \phi 2$) and ($\phi 1, \phi 2 \mathrm{~L}$) with input resistance of each pin.

DEFINITIONS OF CHARACTERISTIC ITEMS

1. Saturation voltage : $\mathbf{V s a t}_{\text {sat }}$

Output signal voltage at which the response linearity is lost.
2. Saturation exposure: SE

Product of intensity of illumination (Ix) and storage time (s) when saturation of output voltage occurs.
3. Photo response non-uniformity: PRNU

The output signal non-uniformity of all the valid pixels when the photosensitive surface is applied with the light of uniform illumination. This is calculated by the following formula, and it is defined by each six of them.

$$
\operatorname{PRNU}(\%)=\frac{\Delta x}{\bar{x}} \times 100
$$

$$
\begin{aligned}
& \Delta x: \operatorname{maximum} \text { of }\left|x_{j}-\bar{x}\right| \\
& \bar{x}=\frac{\sum_{j=1}^{7500} x_{j}}{7500}
\end{aligned}
$$

$$
\mathrm{x}_{\mathrm{j}} \text { : Output voltage of valid pixel number } \mathrm{j}
$$

4. Average dark signal : ADS

Average output signal voltage of all the valid pixels at light shielding. This is calculated by the following formula, and it is defined by each six of them.

$$
\operatorname{ADS}(\mathrm{mV})=\frac{\sum_{\mathrm{j}=1}^{7500} \mathrm{~d}_{\mathrm{j}}}{7500}
$$

5. Dark signal non-uniformity: DSNU

Absolute maximum of the difference between ADS and voltage of the highest or lowest output pixel of all the valid pixels at light shielding. This is calculated by the following formula, and it is defined by each six of them.

DSNU (mV) : maximum of $\mid d_{j}-$ ADS $\left.\right|_{j=1 \text { to } 7500}$
d_{j} : Dark signal of valid pixel number j

6. Output impedance: Zo

Impedance of the output pins viewed from outside.
7. Response: R

Output voltage divided by exposure ($\mathrm{lx} \cdot \mathrm{s}$).
Note that the response varies with a light source (spectral characteristic).
8. Image lag: IL

The rate between the last output voltage and the next one after read out the data of a line.

9. Image lag color difference: IL-DIF

It is defined as a difference between colors of the average of image lag. It is expressed with the next expression to be concrete.
| (average of image lag of blue output) - (average of image lag of green output) |
| (average of image lag of green output) - (average of image lag of red output) |
| (average of image lag of red output) - (average of image lag of blue output) |
10. Image lag O/E: IL-O/E

It is defined as a difference of the average of image lag of odd and even pixels for each color.
11. Register imbalance: RI

The rate of the difference between the averages of the output voltage of Odd and Even pixels, against the average output voltage of all the valid pixels.
$R I(\%)=\frac{\frac{2}{n}\left|\sum_{j=1}^{\frac{n}{2}}\left(V_{2 j-1}-V_{2 j}\right)\right|}{\frac{1}{n} \sum_{j=1}^{n} V_{j}} \times 100$
n : Number of valid pixels
V_{j} : Output voltage of each pixel
12. Light shielding random noise : σ dark

Light shielding random noise σ dark is defined as the standard deviation of a valid pixel output signal with 100 times (=100 lines) data sampling at dark (light shielding).

$$
\sigma \operatorname{dark}(m V)=\sqrt{\frac{\sum_{i=1}^{100}\left(V_{i}-\overline{\mathrm{V}}\right)^{2}}{100}} \quad, \overline{\mathrm{~V}}=\frac{1}{100} \sum_{\mathrm{i}=1}^{100} \mathrm{~V}_{\mathrm{i}}
$$

V_{i} : A valid pixel output signal among all of the valid pixels for each color

This is measured by the DC level sampling of only the signal level, not by CDS (Correlated Double Sampling).

STANDARD CHARACTERISTIC CURVES (Nominal)

TOTAL SPECTRAL RESPONSE CHARACTERISTICS
(without infrared cut filter and heat absorbing filter) ($\mathrm{T}_{\mathrm{A}}=+\mathbf{+ 2 5}{ }^{\circ} \mathrm{C}$)

APPLICATION CIRCUIT EXAMPLE

Remarks 1. Connect two inverters (74AC04) to each $\phi 1, \phi 2$ pin.
2. Inverters shown in the above application circuit example are the 74AC04.
3. B 1 to B 6 in the application circuit example are shown in the figure below.

PACKAGE DRAWING

CCD LINEAR IMAGE SENSOR 36-PIN CERAMIC DIP (15.24 mm (600))

Name	Dimension	Refractive index
Glass cap	$91.0 \times 9.0 \times 1.1$	1.5

※1 1 st valid pixel \longrightarrow Center of package
※2 The bottom of package \longrightarrow The surface of the chip
$※ 3$ The surface of the chip \longrightarrow The surface of the glass cap
※4 The tolerance of packge dimension
± 0.25 : less than 10 mm from W/F edge ± 0.50 : equal or more than 10 mm from W/F edge

36D-1CCD-PKG3-1

RECOMMENDED SOLDERING CONDITIONS

When soldering this product, it is highly recommended to observe the conditions as shown below.
If other soldering processes are used, or if the soldering is performed under different conditions, please make sure to consult with our sales offices.

For more details, refer to our document "Semiconductor Device Mounting Technology Manual" (C10535E).

Type of Through-hole Device

μ PD3768D : CCD linear image sensor 36-pin ceramic DIP (CERDIP) (15.24 mm (600))

Process	Conditions
Partial heating method	Pin temperature : $300^{\circ} \mathrm{C}$ or below, Heat time : 3 seconds or less (per pin)

NOTES ON THE USE OF THE PACKAGE

The application of an excessive load to the package may cause the package to warp or break, or cause chips to come off internally. Particular care should be taken when mounting the package on the circuit board.
For this product, the reference value for the three-point bending strength ${ }^{\text {Note }}$ is $180[\mathrm{~N}]$ (at distance between supports: 70 mm), is 500 [N] (at distance between supports: 26 mm). Avoid imposing a load, however, on the inside portion as viewed from the face on which the window (glass) is bonded to the package body (ceramic).

Note Three-point bending strength test
Distance between supports: 70 mm or 26 mm , Support R: R 2 mm , Loading rate: $0.5 \mathrm{~mm} / \mathrm{min}$.

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is current as of May, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

[^0]: The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
 Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

