NEC

MOS INTEGRATED CIRCUIT $\mu \, \mathbf{PD16770}$

420-OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 64-GRAY SCALES)

DESCRIPTION

The μ PD16770 is a source driver for TFT-LCDs capable of dealing with displays with 64-gray scales. Data input is based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors by output of 64 values γ -corrected by an internal D/A converter and 5-by-2 external power modules.

Because the output dynamic range is as large as $V_{SS2} + 0.1$ V to $V_{DD2} - 0.1$ V, level inversion operation of the LCD's common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion, n-line inversion and column line inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a clock frequency of 45 MHz when driving at 2.3 V, this driver is applicable to SXGA+ standard TFT-LCD panels.

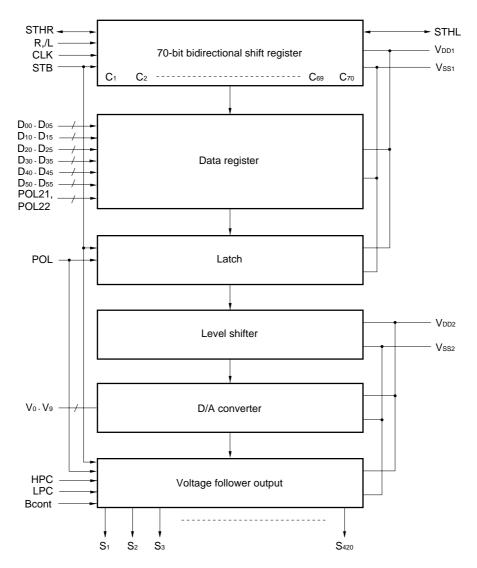
FEATURES

- CMOS level input (2.3 to 3.6 V)
- 420 Outputs
- Input of 6 bits (gray scale data) by 6 dots
- Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and a D/A converter
- Logic power supply voltage (VDD1): 2.3 to 3.6 V
- Driver power supply voltage (VDD2): 8.5 V \pm 0.5 V
- High-speed data transfer: fcLK = 45 MHz (internal data transfer speed when operating at VDD1 = 2.3 V)
- Output dynamic range Vss2 + 0.1 V to Vdd2 0.1 V
- Apply for dot-line inversion, n-line inversion and column line inversion
- Output Voltage polarity inversion function (POL)
- Display data inversion function (Capable of controlling by each input port) (POL21, POL22)
- Current consumption control function (LPC, HPC, Bcont)
 - Slim chip

ORDERING INFORMATION

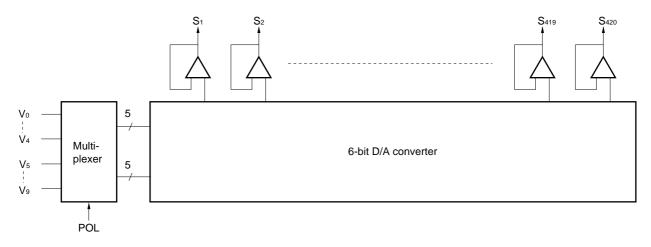
Part Number

Package

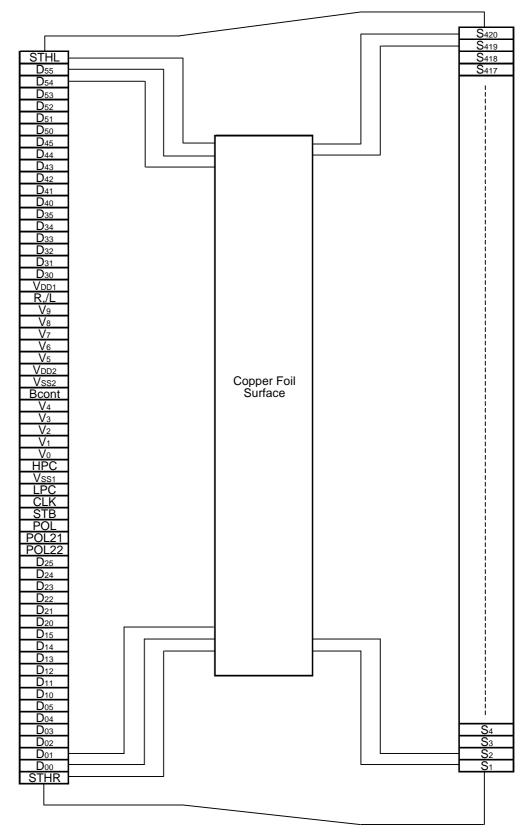

μ PD16770N -×××

TCP (TAB package)

Remark The TCP's external shape is customized. To order the required shape, please contact one of our sales representatives.


The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

1. BLOCK DIAGRAM



Remark /xxx indicates active low signal.

2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER

Remark This figure does not specify the TCP package.

4. PIN FUNCTIONS

S1 to S420		I/O	Description
	Driver	0	The D/A converted 64-gray-scale analog voltage is output.
Doo to Dos	Display data	I	The display data is input with a width of 36 bits, viz., the gray scale data (6 bit
D10 to D15			by 6 dots (2 pixels).
D20 to D25			Dxo: LSB, Dx5: MSB
D ₃₀ to D ₃₅			
D40 to D45			
D50 to D55			
R,/L	Shift direction control	Ι	Refers to the shift direction control. The shift directions of the shift registers are as follows. $R,/L = H$: STHR input, $S_1 \rightarrow S_{420}$, STHL output $R,/L = L$: STHL input, $S_{420} \rightarrow S_1$, STHR output
STHR	Right shift start pulse	I/O	These refer to the start pulse I/O pins when driver ICs are connected in
STIK .	Right shift start puise	1/0	cascade. Loading of display data starts when H is read at the rising edge of CLK.
STHL	Left shift start pulse	I/O	R,/L = H (right shift): STHR input, STHL output
			R,/L = L (left shift): STHL input, STHR output
			The start pulse width (H level) for next-level drivers is 1CLK.
CLK	Shift clock	Ι	Refers to the shift register's shift clock input. The display data is loaded into the data register at the rising edge. At the rising edge of the 70th clock after the start pulse input, the start pulse output reaches the high level, thus becoming the start pulse of the next-level driver. If 72-clock pulses are input after input of the start pulse, input of displa data is halted automatically. The contents of the shift register are cleared at
STB	Latch	I	the STB's rising edge. The contents of the data register are transferred to the latch circuit at the risin edge. And, at the falling edge, the gray scale voltage is supplied to the driver
POL	Polarity	I	It is necessary to ensure input of one pulse per horizontal period. POL = L: The S _{2n-1} output uses V ₀ to V ₄ as the reference supply. The S _{2n} output uses V ₅ to V ₉ as the reference supply. POL = H: The S _{2n-1} output uses V ₅ to V ₉ as the reference supply. The S _{2n} output uses V ₀ to V ₄ as the reference supply. S _{2n-1} indicates the odd output: and S _{2n} indicates the even output. Input of the POL signal is allowed the setup time (t _{POL-STB}) with respect to STB's rising adapted
POL21, POL22	Data inversion	Ι	edge. Data inversion can invert when display data is loaded. POL21: Invert/not invert of display data D ₀₀ to D ₀₅ , D ₁₀ to D ₁₅ , D ₂₀ to D ₂₅ . POL22: Invert/not invert of display data D ₃₀ to D ₃₅ , D ₄₀ to D ₄₅ , D ₅₀ to D ₅₅ . POL21, POL22 = H : Display data is inverted. POL21, POL22 = L : Display data is not inverted.
LPC	Low power control	Ι	Controls the write function of the driver section by digitally controlling the byp current of the output amplifier.
HPC	High power control	I	This pin is pulled up to the VDD1 power supply inside the IC.

(2/2)

Pin Symbol	Pin Name	I/O	Description
Bcont	Bias control	I	This pin can be used to finely control the bias current inside the output amplifier. When this fine-control function is not required, leave this pin open. Refer to 9. BIAS CURRENT CONTROL PIN.
V_0 to V_9	γ -corrected power supplies	_	Input the γ -corrected power supplies from outside by using operational amplifier. Make sure to maintain the following relationships. During the gray scale voltage output, be sure to keep the gray scale level power supply at a constant level. $V_{DD2} - 0.1 V \ge V_0 > V_1 > V_2 > V_3 > V_4 > 0.5 V_{DD2} > V_5 > V_6 > V_7 > V_8 > V_9 \ge V_{SS2} + 0.1 V$
Vdd1	Logic power supply	_	2.3 to 3.6 V
Vdd2	Driver power supply	-	$8.5 V \pm 0.5 V$
Vss1	Logic ground	_	Grounding
Vss2	Driver ground	_	Grounding

Cautions 1. The power start sequence must be VDD1, logic input, and VDD2 & V0 to V9 in that order. Reverse this sequence to shut down.

2. To stabilize the supply voltage, please be sure to insert a 0.1 μ F bypass capacitor between V_{DD1}-V_{SS1} and V_{DD2}-V_{SS2}. Furthermore, for increased precision of the D/A converter, insertion of a bypass capacitor of about 0.01 μ F is also advised between the γ -corrected power supply terminals (V₀, V₁, V₂, ..., V₉) and V_{SS2}.

5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE

This product incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively gray scale voltages of differing polarity with respect to the LCD's counter electrode (common electrode) voltage. The D/A converter consists of ladder resistors and switches.

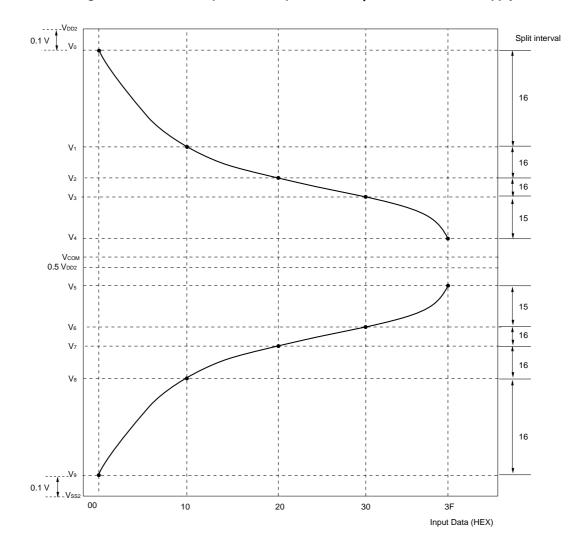

The ladder resistors (r0 to r62) are designed so that the ratio of LCD panel γ -compensated voltages to V₀' to V₆₃' and V₀'' to V₆₃'' is almost equivalent. For the 2 sets of five γ -compensated power supplies, V₀ to V₄ and V₅ to V₉, respectively, input gray scale voltages of the same polarity with respect to the common voltage. When fine gray scale voltage precision is not necessary, there is no need to connect a voltage follower circuit to the γ -compensated power supplies V₁ to V₃ and V₆ to V₈.

Figure 5-1 shows the relationship between the driving voltages such as liquid-crystal driving voltages V_{DD2} and Vss₂, common electrode potential V_{COM}, and γ -corrected voltages V₀ to V₉ and the input data.

Be sure to maintain the voltage relationships as follows:

 $V_{DD2} - 0.1 \ V \ge V_0 > V_1 > V_2 > V_3 > V_4 > 0.5 \ V_{DD2} > V_5 > V_6 > V_7 > V_8 > V_9 \ge V_{SS2} + 0.1 \ V.$

Figures 5–2 and 5–3 show the relationship between the input data and the output data and the resistance values of the resistor strings.

Figure 5–1. Relationship between Input Data and γ - corrected Power Supply

	DATA	D _{X5}	D _{X4}	D _{X3}	D _{X2}	D _{X1}	D _{X0}		Output	Voltage		r n	(Ω)
Vo Vo'	00H	0	0	0	0	0	0	V ₀ '	V ₀	U		r0	800
r0	01H	0	0	0	0	0	1	V1'	$V_1 + (V_0 - V_1) \times$	7250 /	8050	r1	750
· V₁'	02H	0	0	0	0	1	0	V2'	$V_1+(V_0-V_1)x$	6500 /	8050	r2	700
r1 📙	03H	0	0	0	0	1	1	V3'		5800 /	8050	r3	650
r2	04H	0	0	0	1	0	0	V4'	$V_1+(V_0-V_1)x$	5150 /	8050	r4	600
12 U	05H	0	0	0	1	0	1	V5'	$V_1+(V_0-V_1)x$	4550 /	8050	r5	550
r3	06H	0	0	0	1	1	0	V ₆ '	$V_1 + (V_0 - V_1) \times$	4000 /	8050	r6	550
	07H	0	0	0	1	1	1	V7'	$V_1 + (V_0 - V_1) \times$	3450 /	8050	r7	500
	08H 09H	0	0	1	0	0	0	V8' V9'	V1+(V0-V1)× V1+(V0-V1)×	2950 / 2450 /	8050 8050	r8 r9	500 400
	09H 0AH	0	0	1	0	1	0	V9 V10'	$V_1 + (V_0 - V_1) \times V_1 + (V_0 - V_1) \times V_1$	2430 /	8050	r10	400
	0/UH 0BH	0	0	1	0	1	1	V ₁₁ '	$V_1 + (V_0 - V_1) \times$	1650 /	8050	r11	350
	0CH	0	0	1	1	0	0	V ₁₂ '	$V_1 + (V_0 - V_1) \times$	1300 /	8050	r12	350
r14	0DH	0	0	1	1	0	1		V1+(V0-V1)x	950 /	8050	r13	350
► V15'	0EH	0	0	1	1	1	0	V14'	$V_1 + (V_0 - V_1) \times$	600 /	8050	r14	300
r15	0FH	0	0	1	1	1	1	V15'	$V_1 + (V_0 - V_1) x$	300 /	8050	r15	300
V1 V16'	10H	0	1	0	0	0	0	V ₁₆ '				r16	300
r16	11H	0	1	0	0	0	1		$V_2 + (V_1 - V_2) x$	2450 /	2750	r17	250
► V ₁₇ '	12H	0	1	0	0	1	0	V ₁₈ '		2200 /	2750	r18	250
r17	13H	0	1	0	0	1	1	V19'		1950 /	2750	r19	250
	14H	0	1	0	1	0	0	V ₂₀ '	$V_2 + (V_1 - V_2) \times$	1700 /	2750	r20	200
	15H 16H	0	1	0	1	0	1	V ₂₁ ' V ₂₂ '	, ,	1500 /	2750 2750	r21 r22	200 200
	17H	0	1	0	1	1	1	V 22 V23'	· · · · ·	1100 /	2750	r23	150
	18H	0	1	1	0	0	0	V23 V24'		950 /	2750	r24	150
	19H	0	1	1	0	0	1	V ₂₄		800 /	2750	r25	150
	1AH	0	1	1	0	1	0	V ₂₆ '		650 /	2750	r26	150
	1BH	0	1	1	0	1	1	V ₂₇ '	$V_{2+}(V_{1}-V_{2})x$	500 /	2750	r27	100
	1CH	0	1	1	1	0	0	V ₂₈ '	$V_2 + (V_1 - V_2) \mathbf{x}$	400 /	2750	r28	100
	1DH	0	1	1	1	0	1	V ₂₉ '	$V_2 + (V_1 - V_2) x$	300 /	2750	r29	100
	1EH	0	1	1	1	1	0	V ₃₀ '		200 /	2750	r30	100
	1FH	0	1	1	1	1	1	V_{31}^{\prime}	$V_2+(V_1-V_2)x$	100 /	2750	r31	100
	20H	1	0	0	0	0	0	V ₃₂ '				r32	100
	21H	1	0	0	0	0	1	_	$V_3 + (V_2 - V_3) \times$	1500 /	1600	r33	100
	22H	1	0	0	0	1	0	V ₃₄ '		1400 /	1600	r34	100
	23H 24H	1	0	0	0	1 0	1		$V_3+(V_2-V_3)\times$	1300 /	1600 1600	r35 r36	100
	24H 25H	1	0	0	1	0	1	_	V ₃ +(V ₂ -V ₃)× V ₃ +(V ₂ -V ₃)×	1200 /	1600	r37	100
	26H	1	0	0	1	1	0	_	$V_{3+}(V_{2}-V_{3})$ ×	1000 /	1600	r38	100
	27H	1	0	0	1	1	1		$V_{3}+(V_{2}-V_{3})x$	900 /	1600	r39	100
	28H	1	0	1	0	0	0		$V_{3}+(V_{2}-V_{3})x$	800 /	1600	r40	100
	29H	1	0	1	0	0	1	V41'	$V_{3}+(V_{2}-V_{3})x$	700 /	1600	r41	100
r46	2AH	1	0	1	0	1	0	V42'	$V_{3}+(V_{2}-V_{3})x$	600 /	1600	r42	100
↓ V47'	2BH	1	0	1	0	1	1	V ₄₃ '	$V_3+(V_2-V_3)x$	500 /	1600	r43	100
r47	2CH	1	0	1	1	0	0	V44'		400 /	1600	r44	100
V3 V48'	2DH	1	0	1	1	0	1		$V_3 + (V_2 - V_3) \times$	300 /	1600	r45	100
r48	2EH	1	0	1	1	1	0		V3+(V2-V3)×	200 /	1600	r46	100
► V ₄₉ '	2FH	1	0	1	1	1	1		$V_3+(V_2-V_3)\times$	100 /	1600	r47	100
r49	30H	1	1	0	0	0	0	V48'		2250 /	2450	r48 r49	100
	31H 32H	1	1	0	0	1	1	V ₄₉ ' V ₅₀ '		3350 / 3250 /	3450 3450	r50	100
	33H	1	1	0	0	1	1	V 50 V51'		3150 /	3450	r51	100
	34H	1	1	0	1	0	0	V ₅₂ '	$V_{4+}(V_{3}-V_{4})\times$	3050 /	3450	r52	100
	35H	1	1	0	1	0	1	V ₅₂ '	$V_{4+}(V_{3}-V_{4})\times$	2950 /	3450	r53	150
	36H	1	1	0	1	1	0	V ₅₄ '	$V_{4}+(V_{3}-V_{4})\times$	2800 /	3450	r54	150
r60	37H	1	1	0	1	1	1	V ₅₅ '	V4+(V3-V4)×	2650 /	3450	r55	150
-C1 V61'	38H	1	1	1	0	0	0	V56'		2500 /	3450	r56	200
r61	39H	1	1	1	0	0	1	V57'	V4+(V3-V4)×	2300 /	3450	r57	200
V ₆₂ ′	3AH	1	1	1	0	1	0	V ₅₈ '		2100 /	3450	r58	250
r62	3BH	1	1	1	0	1	1	V ₅₉ '		1850 /	3450	r59	250
V4 V63'	3CH	1	1	1	1	0	0	V ₆₀ '	· · · · ·	1600 /	3450	r60	300
	3DH	1	1	1	1	0	1	V ₆₁ '		1300 /	3450	r61	500
	3EH 3FH	1	1	1	1	1	0	V ₆₂ ' V ₆₃ '	V4+(V3-V4) x V4	800 /	3450	r62 rtotal	800 15850
	JI'T							¥ 63	* 4			notal	10000

Figure 5–2. Relationship between Input Data and Output voltage $V_{DD2} - 0.1 V \ge V_0 > V_1 > V_2 > V_3 > V_4 \ge 0.5 V_{DD2}$, POL21, POL22 = L

Caution There is no connection between V_4 and V_5 terminal in the chip.

	DATA	Dx5	Dx4	Dx3	Dx2	Dx1	Dx0		Output	Valtaria		m	(Ω)
V₅ V ₆₃ "	00H	0	0	0	0	0	0	V ₀ "		Voltage		rn r0	800
r62	0011 01H	0	0	0	0	0	1	V0 V1"		800 /	8050	r1	750
► V ₆₂ "	02H	0	0	0	0	1	0	V ₂ "	$V_{9}+(V_{8}-V_{9})\times$	1550 /	8050	r2	700
r61 🗖	03H	0	0	0	0	1	1	V ₃ "	$V_{9}+(V_{8}-V_{9})\times$	2250 /	8050	r3	650
► V ₆₁ ''	04H	0	0	0	1	0	0	V4"	V9+(V8-V9)×	2900 /	8050	r4	600
r60 🗍 001	05H	0	0	0	1	0	1	V5"	$V_9+(V_8-V_9)\times$	3500 /	8050	r5	550
V60''	06H	0	0	0	1	1	0	V6"	V ₉ +(V ₈ -V ₉)×	4050 /	8050	r6	550
r59	07H	0	0	0	1	1	1	V7"	V9+(V8-V9)×	4600 /	8050	r7	500
	08H	0	0	1	0	0	0	V8"	$V_9+(V_8-V_9)\times$	5100 /	8050	r8	500
	09H	0	0	1	0	0	1	V9"	$V_9 + (V_8 - V_9) \times$	5600 /	8050	r9	400
	0AH	0	0	1	0	1	0	V10"	$V_9+(V_8-V_9)\times$	6000 /	8050	r10	400
	0BH 0CH	0	0	1	0	1	1	V ₁₁ "	$V_9+(V_8-V_9)\times$	6400 / 6750 /	8050 8050	r11 r12	350 350
	0CH 0DH	0	0	1	1	0	1	V ₁₂ " V ₁₃ "	V9+(V8-V9)× V9+(V8-V9)×	7100 /	8050	r12	350
r49	0EH	0	0	1	1	1	0	V13 V14"	V9+(V8-V9)× V9+(V8-V9)×	7450 /	8050	r14	300
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	0FH	0	0	1	1	1	1	V ₁₅ "		7750 /	8050	r15	300
r48	10H	0	1	0	0	0	0	V16"	V8			r16	300
V ₆ → V ₄₈ "	11H	0	1	0	0	0	1	V17"	V8+(V7-V8)×	300 /	2750	r17	250
V47"	12H	0	1	0	0	1	0	V ₁₈ "	$V_8 + (V_7 - V_8) \times$	550 /	2750	r18	250
r46	13H	0	1	0	0	1	1	V19''	V8+(V7-V8)×	800 /	2750	r19	250
	14H	0	1	0	1	0	0	V ₂₀ "	V ₈ +(V ₇ -V ₈)×	1050 /	2750	r20	200
	15H	0	1	0	1	0	1	V ₂₁ "	$V_8 + (V_7 - V_8) \times$	1250 /	2750	r21	200
	16H	0	1	0	1	1	0	V ₂₂ "	$V_8 + (V_7 - V_8) \times$	1450 /	2750	r22	200
	17H 18H	0	1	0	1	1	1	V ₂₃ " V ₂₄ "	V8+(V7-V8)× V8+(V7-V8)×	<u>1650 /</u> 1800 /	2750 2750	r23 r24	150 150
	19H	0	1	1	0	0	1	V 24 V25''	$V_8 + (V_7 - V_8) \times V_8 $	1950 /	2750	r25	150
	1311 1AH	0	1	1	0	1	0	V 25		2100 /	2750	r26	150
	1BH	0	1	1	0	1	1	V ₂₇ "	$V_{8+}(V_{7}-V_{8})x$	2250 /	2750	r27	100
	1CH	0	1	1	1	0	0	V28"	V8+(V7-V8)×	2350 /	2750	r28	100
	1DH	0	1	1	1	0	1	V ₂₉ "	$V_8 + (V_7 - V_8) \times$	2450 /	2750	r29	100
	1EH	0	1	1	1	1	0	V ₃₀ "	V8+(V7-V8)×	2550 /	2750	r30	100
	1FH	0	1	1	1	1	1	V31"	V8+(V7-V8)×	2650 /	2750	r31	100
	20H	1	0	0	0	0	0	V ₃₂ "	V ₇			r32	100
	21H	1	0	0	0	0	1	V ₃₃ "	$V_7+(V_6-V_7)x$	100 /	1600	r33	100
	22H	1	0	0	0	1	0	V ₃₄ "	$V_7 + (V_6 - V_7) \times$	200 /	1600	r34	100
	23H 24H	1	0	0	0	1	1	V35" V36"	V7+(V6-V7)× V7+(V6-V7)×	300 / 400 /	1600 1600	r35 r36	100 100
	2411 25H	1	0	0	1	0	1	V 36 V37''	$V_7 + (V_6 - V_7) \times V_7 + (V_6 - V_7) \times V_7) \times V_7 + (V_6 - V_7) \times V_7) \times V_7 + (V_6 - V_7) \times V_7) \times V_7$	500 /	1600	r37	100
	26H	1	0	0	1	1	0	V37	V7+(V6-V7)×	600 /	1600	r38	100
r17	27H	1	0	0	1	1	1	V ₃₉ "	$V_7 + (V_6 - V_7) \times$	700 /	1600	r39	100
► V ₁₇ "	28H	1	0	1	0	0	0	V40"	V7+(V6-V7)×	800 /	1600	r40	100
r16 ∐ V ₈ → V ₁₆ "	29H	1	0	1	0	0	1	V41"	V7+(V6-V7)×	900 /	1600	r41	100
V ₈ → V ₁₆ " r15	2AH	1	0	1	0	1	0	V ₄₂ "	V7+(V6-V7)×	1000 /	1600	r42	100
► V15"	2BH	1	0	1	0	1	1	V43"	V7+(V6-V7)×	1100 /	1600	r43	100
r14	2CH	1	0	1	1	0	0	V44"	$V_7+(V_6-V_7)x$	1200 /	1600	r44	100
	2DH	1	0	1	1	0	1	V45"		1300 /	1600	r45	100
	2EH 2FH	1	0	1	1	1	0		V7+(V6-V7)× V7+(V6-V7)×	1400 / 1500 /	1600 1600	r46 r47	100 100
	2FH 30H	1	0	0	0	0	0	V47 V48''		1500 /	1000	r47	100
	31H	1	1	0	0	0	1		V ₆ +(V ₅ -V ₆)×	100 /	3450	r49	100
	32H	1	1	0	0	1	0		V6+(V5-V6)×	200 /	3450	r50	100
	33H	1	1	0	0	1	1		$V_6+(V_5-V_6)\times$	300 /	3450	r51	100
	34H	1	1	0	1	0	0		$V_6 + (V_5 - V_6) \times$	400 /	3450	r52	100
r2	35H	1	1	0	1	0	1		V6+(V5-V6)×	500 /	3450	r53	150
► V2"	36H	1	1	0	1	1	0		$V_6 + (V_5 - V_6) \times$	650 /	3450	r54	150
r1	37H	1	1	0	1	1	1		$V_6 + (V_5 - V_6) \times$	800 /	3450	r55	150
- V1"	38H	1	1	1	0	0	0		$V_6+(V_5-V_6)\times$	950 /	3450	r56	200
r0 🖵	39H	1	1	1	0	0	1		$V_6+(V_5-V_6)\times V_6+(V_5-V_6)\times$	1150 /	3450	r57	200
V9 V0''	3AH 3BH	1	1	1	0	1	0		$V_6 + (V_5 - V_6) \times V_6 + (V_5 - V_6) \times V_6$	1350 / 1600 /	3450 3450	r58 r59	250 250
	3CH	1	1	1	1	0	0		$V_6 + (V_5 - V_6) \times V_6 + (V_6 - V_6) \times V_6) \times V_6 + (V_6 - V_6) \times V_6) \times V_6 + (V_6 - V_6) \times V_6) \times V_6$	1850 /	3450	r60	300
	3DH	1	1	1	1	0	1		$V_{6+}(V_{5}-V_{6})x$	2150 /	3450	r61	500
	3EH	1	1	1	1	1	0		V6+(V5-V6)×	2650 /	3450	r62	800
	3FH	1	1	1	1	1	1	V63''				rtotal	15850
								_				_	

Figure 5–3. Relationship between Input Data and Output voltage 0.5 VDD2 \ge V4 > V5 > V6 > V7 > V8 > V9 \ge Vss2 + 0.1 V, POL21, POL22 = L

Caution There is no connection between V_4 and V_5 terminal in the chip.

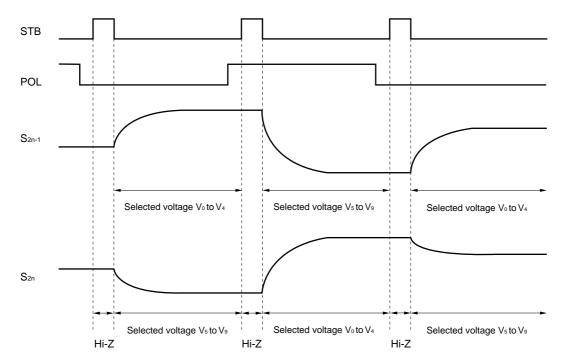
6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN

Data format: 6 bits × 2 RGBs (6 dots) Input width: 36 bits (2-pixel data)

R,/L = H (Right shift)

Output	S1	S ₂	S₃	S4	•••	S 419	S 420
Data	Doo to Dos	D10 to D15	D20 to D25	D30 to D35	•••	D40 to D45	D50 to D55

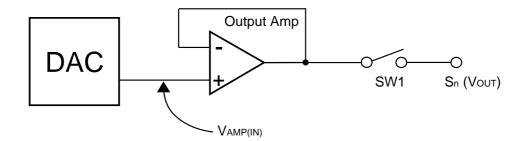
R,/L = L (Left shift)

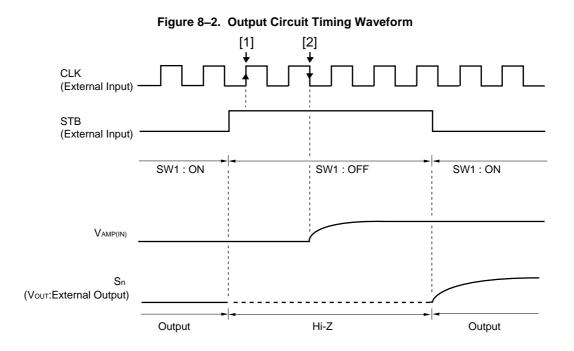

Output	S 1	S ₂	S ₃	S4		S 419	S420
Data	Doo to Dos	D10 to D15	D20 to D25	D30 to D35	•••	D40 to D45	D50 to D55

POL	S _{2n-1} Note	S _{2n} Note		
L	V_0 to V_4	V5 to V9		
Н	V5 to V9	V_0 to V_4		

Note S2n-1 (Odd output), S2n (Even output)

7. RELATIONSHIP BETWEEN STB, POL AND OUTPUT WAVEFORM


The output voltage is written to the LCD panel synchronized with the STB falling edge.



8. RELATIONSHIP BETWEEN STB, CLK, AND OUTPUT WAVEFORM

The output voltage is written to the LCD panel synchronized with the STB falling edge.

Figure 8–1. Output Circuit Block Diagram

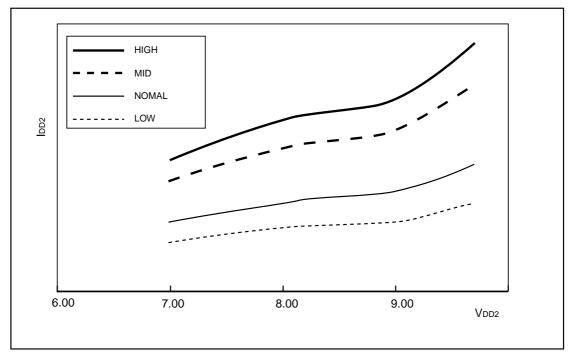
Remarks 1. STB = L : SW1 = ON, STB = H : SW1 = OFF

2. STB = "H" is acknowledged at timing [1].

 $\ensuremath{\textbf{3.}}$ The display data latch is completed at timing [2] and the input voltage

(Vamp (in) : gray-scale level voltage) of the output amplifier changes.

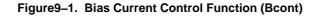
9. BIAS CURRENT CONTROL PIN

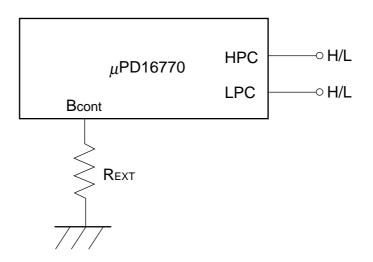

The μ PD16770 has a power control function which can switch the bias current of the output amplifier between four levels and a bias control function (Bcont) which can be used to finely control the bias current.

<Power control function>

The bias current of the output amplifier can be switched between four levels using LPC (Low Power Control) pins and HPC (High Power Control) pins.

Power mode	LPC	HPC		
High	L	L		
Mid	H or open	L		
Normal	L	H or open		
Low	H or open	H or open		


Following graph shows the relationship between each power modes and bias current.



Remark This relationship is founded on results of simulation and don't assuring a characteristics of this product.

<Bias Current Control Function (Bcont)>

It is possible to fine-control the current consumption by using the bias current of the output amplifier control function (Bcont pin). When using this function, connect this pin to the stabilized ground potential (Vss₂) via an external resistor (R_{EXT}). When not using this function, leave this pin open.

Refer to the table below for the percentage of current regulation when using the bias current control function.

_	Current Consumption	Regulation Percentage	
Rext	LPC = H, HPC = H/open	LPC = H/open, HPC = H/open	
∞ (open)	100%	65%	$V_{DD1} = 3.3 V$
50 kΩ	110%	70%	Vdd2 = 8.7 V
20 kΩ	115%	80%	
10 kΩ	120%	85%	

Table9–1. Current Consumption Regulation Percentage Compared to Normal Mode

Remark The above current consumption regulation percentages are founded on results of simulation and don't assuring a characteristics of this product.

Caution Because the power and bias-current control functions control the bias current in the output amplifier and regulate the over-all current consumption of the driver IC, when this occurs, the characteristics of the output amplifier will simultaneously change. Therefore, when using these functions, be sure to sufficiently evaluate the picture quality.

10. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C, V_{SS1} = V_{SS2} = 0 V)

Parameter	Symbol	Rating	Unit
Logic Part Supply Voltage	Vdd1	-0.5 to +4.0	V
Driver Part Supply Voltage	Vdd2	-0.5 to +10.0	V
Logic Part Input Voltage	VII	-0.5 to VDD1 + 0.5	V
Driver Part Input Voltage	VI2	-0.5 to VDD2 + 0.5	V
Logic Part Output Voltage	Vo1	-0.5 to VDD1 + 0.5	V
Driver Part Output Voltage	Vo2	-0.5 to V _{DD2} + 0.5	V
Operating Ambient Temperature	TA	-10 to +75	°C
Storage Temperature	Tstg	-55 to +125	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

1 0	0 (,	,			
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Logic Part Supply Voltage	V _{DD1}		2.3		3.6	V
Driver Part Supply Voltage	V _{DD2}		8.0	8.5	9.0	V
High-Level Input Voltage	Vih		0.7 Vdd1		V _{DD1}	V
Low-Level Input Voltage	VIL		0		0.3 VDD1	V
γ -Corrected Voltage	Vo to V9		Vss2 + 0.1		Vdd2 - 0.1	V
Driver Part Output Voltage	Vo		Vss2 + 0.1		Vdd2 - 0.1	V
Maximum Clock Frequency	fclк	$V_{DD1} = 2.3 V$			45	MHz

Recommended Operating Range (T_A = -10 to +75°C, Vss1 = Vss2 = 0 V)

★ Electrical Characteristics (T_A = -10 to +75°C, V_{DD1} = 2.3 to 3.6 V, V_{DD2} = 8.5 V ± 0.5 V, V_{SS1} = V_{SS2} = 0 V,

Unless otherwise specified, power mode = normal, Bcont = open)

	0111000 01	and wise specific	ea, ponei mea	e – normal, i	500m = 0pt	511)	
Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
Input Leak Current	١L					±1.0	μA
High-Level Output Voltage	Vон	STHR (STHL), Id	он = 0 mA	Vdd1 - 0.1			V
Low-Level Output Voltage	Vol	STHR (STHL), Id	o∟ = 0 mA			0.1	V
γ -Corrected Supply	Iγ	VDD2 = 8.5 V	V₀pin, V₅pin	126	252	504	μΑ
Current		V_0 to $V_4 =$ V ₅ to $V_9 = 4.0$ V	V₄pin, V∍pin	-504	-252	-126	μΑ
Driver Output Current	Ілон	Vx = 7.0 V, Vout	= 6.5 V Note			-30	μA
	IVOL	Vx = 1.0 V, Vout	= 1.5 V ^{Note}	30			μA
Output Voltage Deviation	ΔVo	TA = 25°C			±7	±20	mV
Output swing difference deviation	ΔV_{P-P}	VDD1 = 3.3 V, VD1 VOUT = 2.0 V, 4.2	,		±2	±15	mV
Logic Part Dynamic Current Consumption	IDD1	V _{DD1}			1.0	6.5	mA
Driver Part Dynamic Current Consumption	IDD2	VDD2, with no load	b		3.0	6.5	mA

Note Vx refers to the output voltage of analog output pins S1 to S420. Vour refers to the voltage applied to analog output pins S1 to S420.

Cautions 1. fstb = 64 kHz, fclk = 40 MHz.

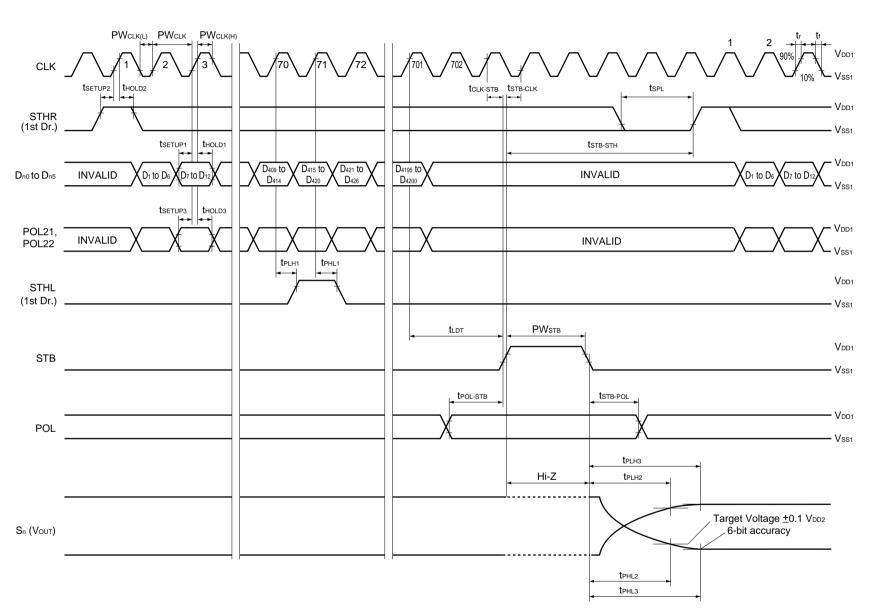
- 2. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured values in the dot checkerboard input pattern.
- 3. Refers to the current consumption per driver when cascades are connected under the assumption of SXGA+ single-sided mounting (10 units).
- Switching Characteristics (TA = -10 to $+75^{\circ}$ C, V_{DD1} = 2.3 to 3.6 V, V_{DD2} = 8.5 V ± 0.5 V, V_{SS1} = V_{SS2} = 0 V, *

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Start Pulse Delay Time	tPLH1	C _L = 10 pF		10	20	ns
	tPHL1			10	20	ns
Driver Output Delay Time	tPLH2	C∟ = 75 pF,		2.5	5	μs
	tPLH3	$R_L = 5 k\Omega$		5	8	μs
	tPHL2			2.5	5	μs
	tPHL3			5	8	μs
Input Capacitance	CI1	STHR (STHL) excluded,			10	pF
		$T_A = 25^{\circ}C$				
	CI2	STHR (STHL),T _A = 25°C			10	pF

Unless otherwise specified, power mode = normal, Bcont = open)

 \star

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock Pulse Width	PWclk		22			ns
Clock Pulse High Period	PWclk(H)		4			ns
Clock Pulse Low Period	PWclk(L)		4			ns
Data Setup Time	tsetup1		4			ns
Data Hold Time	tHOLD1		0			ns
Start Pulse Setup Time	tsetup2		4			ns
Start Pulse Hold Time	tHOLD2		0			ns
POL21/22 Setup Time	tsetup3		4			ns
POL21/22 Hold Time	thold3		0			ns
Start Pulse Low Period	tspl		1			CLK
STB Pulse Width	РWstb		2			CLK
Last Data Timing	t LDT		2			CLK
CLK-STB Time	tclk-sтв	$CLK \uparrow \to STB \uparrow$	6			ns
STB-CLK Time	tstb-clk	$STB \uparrow \to CLK \uparrow$	9			ns
Time Between STB and Start	t sтв-sтн	STB $\uparrow \rightarrow$ STHR(STHL) \uparrow	2			CLK
Pulse						
POL-STB Time	t POL-STB	POL \uparrow or $\downarrow \rightarrow$ STB \uparrow	-5			ns
STB-POL Time	tstb-pol	STB $\downarrow \rightarrow$ POL \downarrow or \uparrow	6			ns


Timing Requirement (T_A = -10 to $+75^{\circ}$ C, V_{DD1} = 2.3 to 3.6 V, V_{SS1} = 0 V, t_r = t_f = 5.0 ns)

Remark Unless otherwise specified, the input level is defined to be V_{IH} = 0.7 V_{DD1}, V_{IL} = 0.3 V_{DD1}.

★ Switching Characteristics Waveform (R,/L = H)

Unless otherwise specified, the input level is defined to be $V\ensuremath{\mathsf{IH}}$ П 0.7 VDD1, VIL = 0.3 VDD1.

16

11. RECOMMENDED SOLDERING CONDITIONS

The following conditions must be met for soldering conditions of the μ PD16770.

For more details, refer to the Semiconductor Device Mounting Technology Manual (C10535E).

Please consult with our sales offices in case other soldering process is used, or in case the soldering is done under different conditions.

μ PD16770N -xxx : TCP (TAB package)

Mounting Condition	Mounting Method	Condition
Thermocompression	Soldering	Heating tool 300 to 350°C: heating for 2 to 3 seconds: pressure 100g (per
		solder)
	ACF	Temporary bonding 70 to 100°C: pressure 3 to 8 kg/cm ² : time 3 to 5
	(Adhesive Conductive	seconds.
	Film)	Real bonding 165 to 180°C: pressure 25 to 45 kg/cm ² : time 30 to 40
		seconds. (When using the anisotropy conductive film SUMIZAC1003 of
		Sumitomo Bakelite, Ltd.)

Caution To find out the detailed conditions for packaging the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more packaging methods at a time.

[MEMO]

NOTES FOR CMOS DEVICES

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Reference Documents

NEC Semiconductor Device Reliability / Quality Control System (C10983E)

Quality Grades to NEC's Semiconductor Devices (C11531E)

- The information in this document is current as of May, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4