

MOS INTEGRATED CIRCUIT μ PD16718

480/420-OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 64-GRAY SCALES)

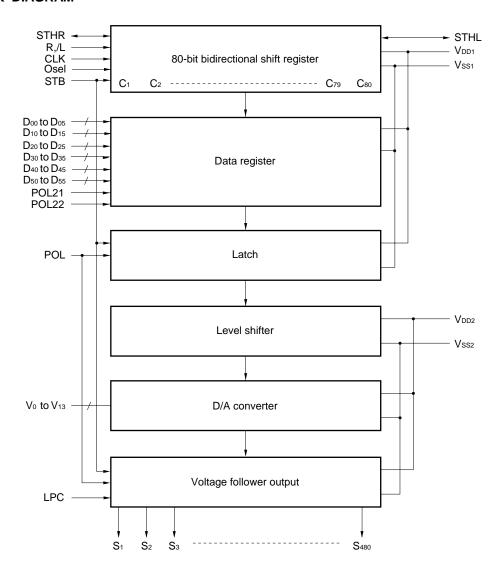
DESCRIPTION

The μ PD16718 is a source driver for TFT-LCDs capable of dealing with displays with 64-gray scales. Data input is based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors by output of 64 values γ -corrected by an internal D/A converter and 7-by-2 external power modules. Because the output dynamic range is as large as Vss2 + 0.1 V to Vdd2 - 0.1 V, level inversion operation of the LCD's common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion, n-line inversion and column line inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a maximum clock frequency of 57 MHz when driving at 2.5 V, this driver is applicable to SXGA+/UXGA-standard TFT-LCD panels.

FEATURES

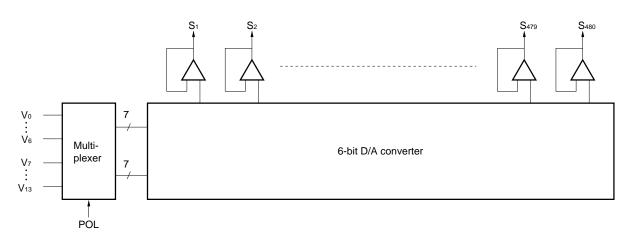
- CMOS level input (2.5 to 3.6 V)
- 480/420 Outputs
- Input of 6 bits (gray scale data) by 6 dots
- Capable of outputting 64 values by means of 7-by-2 external power modules (14 units) and a D/A converter (R-DAC)
- Logic power supply voltage (VDD1): 2.5 to 3.6 V
- Driver power supply voltage (VDD2): 10.0 to 12.5 V
- Output dynamic range Vss2 + 0.1 V to VDD2 0.1 V
- High-speed data transfer: fclk = 57 MHz (internal data transfer speed when operating at VDD1 = 2.5 V
- Apply for dot-line inversion, n-line inversion and column line inversion
- Output Voltage polarity inversion function (POL)
- Display data inversion function (capable of controlling by each input port) (POL21, POL22)
- Current consumption control function (LPC)
- TCP/COF package

★ ORDERING INFORMATION

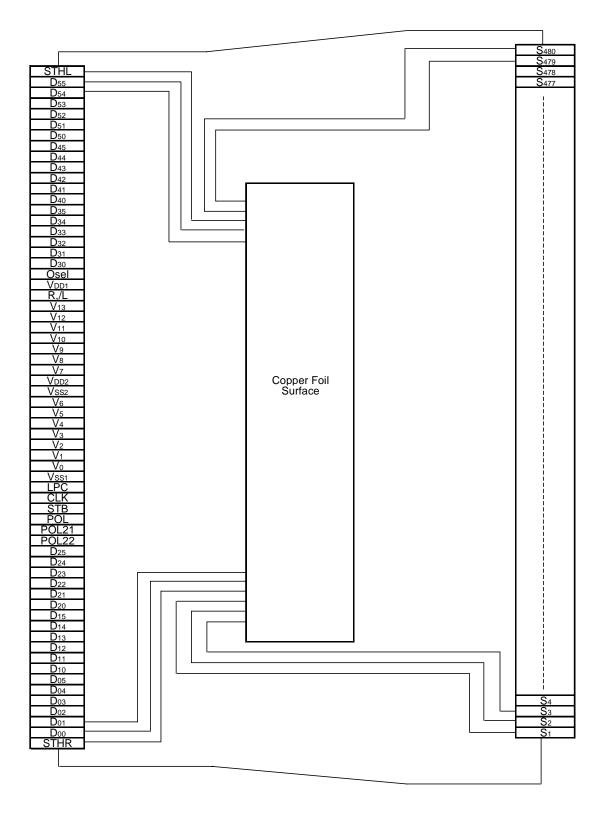

Part Number	Package
μ PD16718N-xxx	TCP (TAB package)
μ PD16718NL-xxx	COF (Chip on Film) package

Remark Consult an our sales representative regarding the TCP/COF.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.



★ 1. BLOCK DIAGRAM


Remark /xxx indicates active low signal.

★ 2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER

3. PIN CONFIGURATION (μ PD16718) (Copper Foil Surface, Face-up)

Remark This figure does not specify the TCP/COF package.

4. PIN FUNCTIONS

(1/2)

Pin Symbol	Pin Name	I/O	Description
S ₁ to S ₄₈₀	Driver	Output	The D/A converted 64-gray-scale analog voltage is output.
Doo to Do5	Display data	Input	The display data is input with a width of 36 bits, viz., the gray scale data (6 bits)
D ₁₀ to D ₁₅			by 6 dots (2 pixels).
D ₂₀ to D ₂₅			Dxo: LSB, Dx5: MSB
D ₃₀ to D ₃₅			
D40 to D45			
D ₅₀ to D ₅₅			
R,/L	Shift direction control	Input	Refers to the shift direction control. The shift directions of the shift registers are as follows. $R/L=H: STHR input, \ S_1 \rightarrow S_{480}, \ STHL \ output$
			$R_1/L = L$: STHL input, $S_{480} \rightarrow S_1$, STHR output
			This pin is pulled up to power supply VDD1 inside IC.
STHR	Right shift start pulse	I/O	These refer to the start pulse I/O pins when driver ICs are connected in cascade. Loading of display data starts when H is read at the rising edge of CLK. R,/L = H (right shift): STHR input, STHL output
STHL	Left shift start pulse	I/O	R,/L = L (left shift): STHL input, STHR output A high level should be input as the pulse of one cycle of the clock signal. If the start pulse input is more than 2 CLK, the first 1 CLK of the high-level input is valid.
CLK	Shift clock	Input	Refers to the shift register's shift clock input. The display data is loaded into the data register at the rising edge. At the rising edge of the 80(70) clock after the start pulse input, the start pulse output reaches the high level, thus becoming the start pulse of the next-level driver. If 82(72)-clock pulses are input after input of the start pulse, input of display data is halted automatically. The contents of the shift register are cleared at the STB's rising edge. () indicates 420 output.
STB	Latch	Input	The contents of the data register are transferred to the latch circuit at the rising edge. And, at the falling edge, the gray scale voltage is supplied to the driver. It is necessary to ensure input of one pulse per horizontal period.
POL	Polarity	Input	POL = L: The S _{2n-1} output uses V ₀ to V ₆ as the reference supply. The S _{2n} output uses V ₇ to V ₁₃ as the reference supply. POL = H: The S _{2n-1} output uses V ₇ to V ₁₃ as the reference supply. The S _{2n} output uses V ₀ to V ₆ as the reference supply. S _{2n-1} indicates the odd output: and S _{2n} indicates the even output. Input of the POL signal is allowed the setup time (tpol-stb) with respect to STB's rising edge.
POL21, POL22	Data inversion	Input	Data inversion can invert when display data is loaded. POL21: Invert/not invert of display data D $_{00}$ to D $_{05}$, D $_{10}$ to D $_{15}$, D $_{20}$ to D $_{25}$. POL22: Invert/not invert of display data D $_{30}$ to D $_{35}$, D $_{40}$ to D $_{45}$, D $_{50}$ to D $_{55}$. POL21, POL22 = H: Display data is inverted inside the μ PD16718. POL21, POL22 = L: Display data is not inverted.
Osel	Number of output pins select	input	Osel = H: driver output = 480 ch Osel = L or open: driver output = 420 ch (Output pins S ₂₁₁ to S ₂₇₀ are invalid) This pin is pulled down to power supply V _{DD1} inside IC.

*

(2/2)

Pin Symbol	Pin Name	I/O	Description
LPC	Low power control	Input	The current consumption is lowered by controlling the constant current source of the output amplifier and reduced V _{DD2} of normal current. LPC = H or open: Normal power mode LPC = L: Low power mode (about 3/4 of the normal current consumption) This pin is pulled up to the V _{DD1} power supply inside IC.
Vo to V ₁₃	γ -corrected power supplies	-	Input the γ -corrected power supplies from outside by using operational amplifier. Make sure to maintain the following relationships. During the gray scale voltage output, be sure to keep the gray scale level power supply at a constant level. $V_{DD2}-0.1\ V \ge V_0 > V_1 > V_2 > V_3 > V_4 > V_5 > V_6 \ge V_7 > V_8 > V_9 > V_{10} > V_{11} > V_{12} > V_{13} \ge V_{SS2}+0.1\ V$ and $0.45\ x\ V_{DD2} \le V_6 = V_7 \le 0.55\ x\ V_{DD2}$ or $V_{DD2}-0.1\ V \ge V_6 > V_5 > V_4 > V_3 > V_2 > V_1 > V_0 \ge V_{13} > V_{12} > V_{11} > V_{10} > V_9 > V_8 > V_7 \ge V_{SS2}+0.1\ V$ and $0.45\ x\ V_{DD2} \le V_0 = V_{13} \le 0.55\ x\ V_{DD2}$
V _{DD1}	Logic power supply	-	2.5 to 3.6 V
V _{DD2}	Driver power supply	_	10.0 to 12.5 V
Vss1	Logic ground	_	Grounding
Vss2	Driver ground		Grounding

- Cautions 1. The power start sequence must be V_{DD1}, logic input, and V_{DD2} & V₀ to V₁₃ in that order.

 Reverse this sequence to shut down. (Simultaneous power application to V_{DD2} and V₀ to V₉ is possible.)
 - 2. To stabilize the supply voltage, please be sure to insert a 0.1 μ F bypass capacitor between V_{DD1}-V_{SS1} and V_{DD2}-V_{SS2}. Furthermore, for increased precision of the D/A converter, insertion of a bypass capacitor of about 0.01 μ F is also advised between the γ -corrected power supply terminals (V₀, V₁, V₂, ..., V₁₃) and V_{SS2}.

5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE

This product incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively gray scale voltages of differing polarity with respect to the LCD's counter electrode (common electrode) voltage. The D/A converter consists of ladder resistors and switches.

The ladder resistors (r0 to r62) are designed so that the ratio of LCD panel γ -compensated voltages to V₀' to V₆₃' and V₀'' to V₆₃'' is almost equivalent. For the 2 sets of seven γ -compensated power supplies, V₀ to V₆ and V₇ to V₁₃, respectively, input gray scale voltages of the same polarity with respect to the common voltage. When fine-gray scale voltage precision is not necessary, there is no need to connect a voltage follower circuit to the γ -compensated power supplies V₀ to V₆ and V₇ to V₁₃.

Figure 5–1 shows the relationship between the driving voltages such as liquid-crystal driving voltages V_{DD2} and V_{SS2} , common electrode potential V_{COM} , and γ -corrected voltages V_0 to V_{13} and the input data. Be sure to maintain the voltage relationships as follows:

```
\begin{split} &V_{DD2} - 0.1 \ V \ge V_0 > V_1 > V_2 > V_3 > V_4 > V_5 > V_6 \ge V_7 > V_8 > V_9 > V_{10} > V_{11} > V_{12} > V_{13} \ge V_{SS2} + 0.1 \ V \ \text{and} \\ &0.45 \ x \ V_{DD2} \le V_6 = V_7 \le 0.55 \ x \ V_{DD2} \ \text{or} \\ &V_{DD2} - 0.1 \ V \ge V_6 > V_5 > V_4 > V_3 > V_2 > V_1 > V_0 \ge V_{13} > V_{12} > V_{11} > V_{10} > V_9 > V_8 > V_7 \ge V_{SS2} + 0.1 \ V \ \text{and} \\ &0.45 \ x \ V_{DD2} \le V_0 = V_{13} \le 0.55 \ x \ V_{DD2} \\ &\text{positive side} > 0.5 \ V_{DD2} - 0.5V, \ \text{negative side} > 0.5 \ V_{DD2} + 0.5 \ V. \end{split}
```

Figures 5–2 and 5–3 show the relationship between input data and output voltage. This driver IC is designed for only single-sided mounting

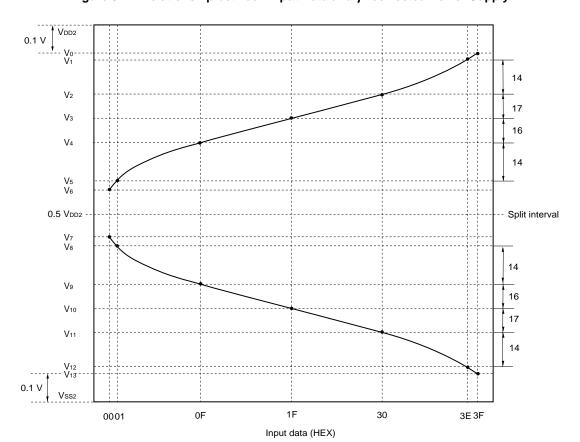
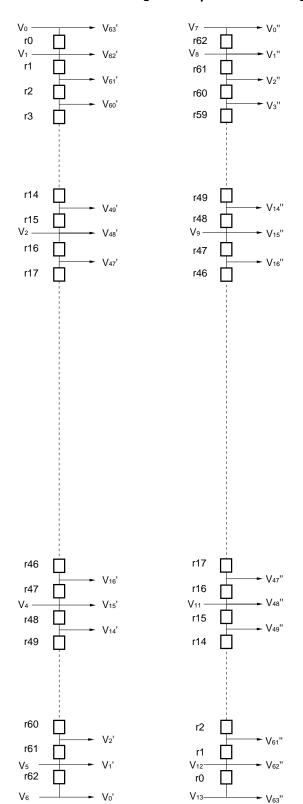



Figure 5–1. Relationship between Input Data and γ - corrected Power Supply

Figure 5–2. γ -corrected Voltages and Ladder Resistors Ratio

ro	Ratio
rn r0	
r1	7.0 5.0
r2	5.0
r3	4.0
r4	3.0
r5	2.5
r6	2.5
r7	2.5
r8	2.0
r9	2.0
r10	1.8
r11	1.8
r12	1.7
r13	1.7
r14	1.7
r15	1.6
r16	1.6
r17	1.6
r18	1.6
r19	1.5
r20	1.5
r21	1.5
r22	1.5
r23	
_	1.5
r24	1.5
r25	1.5
r26	1.5
r27	1.5
r28	1.5
r29	1.5
r30	1.5
r31	1.5
r32	1.5
r33	1.5
r34	1.5
r35	1.5
r36	1.5
r37	1.5
r38	1.5
r39	1.5
r40	1.5
r41	1.5
r42	1.5
r43	1.5
r44	1.5
r45	1.6
r46	1.6
r47	1.6
r48	1.7
r49	1.8
r50	1.9
r51	2.0
r52	2.1
r53	2.2
r54	2.3
r55	2.4
r56	2.5
r57	2.6
r58	2.7
r59	2.8
r60	2.9
r61	3.0
r62	5.0

Caution There is no connection between V_{θ} and V_{7} terminal in the chip.

Figure 5–3. Relationship between Input Data and Output Voltage (POL21, POL22 = L) (Output Voltage 1) $V_{DD2} - 0.1$ V \geq V₀ > V₁ > V₂ > V₃ > V₄ > V₅ > V₆ \geq 0.5 V_{DD2} - 0.5 V (Output Voltage 2) 0.5 V_{DD2} + 0.5 V \geq V₇ > V₈ > V₉ > V₁₀ > V₁₁ > V₁₂ > V₁₃ \geq Vss₂ + 0.1 V

Input Data		Output V	oltage1			Output Vo	ltage2		
00H	V _{0'}	V ₆			V _{0"}	V ₇			
01H	V _{1'}	V ₅			V _{1"}	V ₈			
02H	V _{2'}	$V_5 + (V_4 - V_5) \times$	3.0 /	32.9	V _{2"}	V ₉ +(V ₈ -V ₉)×	29.9	/	32.9
03H	V _{3'}	$V_5 + (V_4 - V_5) \times$	5.9	32.9	V _{3"}	V ₉ +(V ₈ -V ₉)×	27.0	1	32.9
04H	V _{4'}	$V_5 + (V_4 - V_5) \times$	8.7	32.9	V _{4"}	V ₉ +(V ₈ -V ₉)×	24.2	1	32.9
05H	V _{5'}	$V_5 + (V_4 - V_5) \times$	11.4	32.9	V _{5"}	$V_9 + (V_8 - V_9) \times$	21.5	1	32.9
06H	V _{6'}	$V_5 + (V_4 - V_5) \times$	14.0	32.9	V _{6"}	$V_9 + (V_8 - V_9) \times$	18.9	1	32.9
07H	V _{7'}	$V_5 + (V_4 - V_5) \times$	16.5	32.9	V _{7"}	$V_9 + (V_8 - V_9) \times$	16.4	1	32.9
08H	V _{8'}	$V_5 + (V_4 - V_5) \times$	18.9	32.9	V _{8"}	$V_9 + (V_8 - V_9) \times$	14.0	1	32.9
09H	V _{9'}	$V_5 + (V_4 - V_5) \times$	21.2	32.9	V _{9"}	$V_9+(V_8-V_9)\times$	11.7	1	32.9
0AH	V _{10'}	$V_5 + (V_4 - V_5) \times$	23.4	32.9	V _{10"}	$V_9 + (V_8 - V_9) \times$	9.5	/	32.9
0BH	V _{11'}	$V_5 + (V_4 - V_5) \times$	25.5	32.9	V _{11"}	$V_9 + (V_8 - V_9) \times$	7.4	/	32.9
0CH	V _{12'}	$V_5 + (V_4 - V_5) \times$	27.5	32.9	V _{12"}	$V_9 + (V_8 - V_9) \times$	5.4	1	32.9
0DH	V _{13'}	$V_5 + (V_4 - V_5) \times$	29.4	32.9	V _{13"}	$V_9+(V_8-V_9)\times$	3.5	1	32.9
0EH	V _{14'}	$V_5 + (V_4 - V_5) \times$	31.2	32.9	V _{14"}	$V_9 + (V_8 - V_9) \times$	1.7	/	32.9
0FH	V _{15'}	V ₄	31.2 /	32.9	V _{15"}	V _q	1.7	/	32.8
10H	V _{15'}	V ₄ +(V ₃ -V ₄)×	1.6	24.2	V _{15"}	V ₁₀ +(V ₉ -V ₁₀)×	22.7	,	24.0
11H	V _{17'}	$V_4 + (V_3 - V_4) \times$		24.3	V _{17"}	$V_{10}+(V_9-V_{10})\times$	22.7	,	24.3
12H	V ₁₇	$V_4 + (V_3 - V_4) \times$	3.2 / 4.8 /	24.3	V _{17"}	$V_{10}+(V_9-V_{10})\times$	21.1 19.5	/	24.3
13H	V ₁₈	$V_4 + (V_3 - V_4) \times$	6.3	24.3	V _{18"}	$V_{10}+(V_9-V_{10})\times$	18.0	1	
14H	V ₁₉	$V_4 + (V_3 - V_4) \times$	7.8	24.3	V _{19"}	$V_{10}+(V_9-V_{10})\times$	16.5	/	24.3
15H	V ₂₀	$V_4 + (V_3 - V_4) \times$	9.3 /	24.3	V ₂₀ "	$V_{10}+(V_9-V_{10})\times$		1	
16H	V ₂₁ '	V ₄ +(V ₃ -V ₄)×	10.8 /	24.3	V _{21"}	$V_{10}+(V_9-V_{10})\times$	15.0	1	24.3
17H	V _{22'}	V ₄ +(V ₃ -V ₄)×			V _{22"}	$V_{10}+(V_9-V_{10})\times$	13.5	/	24.3
18H	V ₂₃	V ₄ +(V ₃ -V ₄)×		24.3	V _{23"}	$V_{10}+(V_9-V_{10})\times$	12.0	/	24.3
19H	V ₂₄ '	V ₄ +(V ₃ -V ₄)×		24.3	V _{24"} V _{25"}	$V_{10}+(V_9-V_{10})\times$	10.5	/	24.3
1AH	V _{25'}	V ₄ +(V ₃ -V ₄)×	15.3 / 16.8 /	24.3	V _{25"}	$V_{10}+(V_9-V_{10})\times$	9.0	/	24.3
1BH	V ₂₆	V ₄ +(V ₃ -V ₄)×		24.3	V _{26"}		7.5	/	24.3
1CH	V ₂₇ '	V ₄ +(V ₃ -V ₄)×	18.3 / 19.8 /	24.3	V _{27"}	$V_{10}+(V_9-V_{10})\times V_{10}+(V_9-V_{10})\times$	6.0	/	24.3
1DH	V _{28'}	V ₄ +(V ₃ -V ₄)×		24.3			4.5	/	24.3
1EH	V ₂₉	V ₄ +(V ₃ -V ₄)×	21.3 /	24.3	V _{29"}	$V_{10}+(V_9-V_{10})\times V_{10}+(V_9-V_{10})\times$	3.0	/	24.3
1FH		V ₄ +(V ₃ -V ₄)×	22.8 /	24.3			1.5	/	24.3
20H	V _{31'}	V ₃ +(V ₂ -V ₃)×	1.5 /	25.0	V _{31"}	V_{10} $V_{11}+(V_{10}-V_{11})x$	24.4	,	25.0
21H	V _{32'}	V ₃ +(V ₂ -V ₃)×		25.9	V _{32"}	$V_{11}+(V_{10}-V_{11})\times$ $V_{11}+(V_{10}-V_{11})\times$	24.4	/	25.9
22H	V ₃₃	$V_3 + (V_2 - V_3) \times$	3.0 / 4.5 /	25.9 25.9	V _{33"}	$V_{11}+(V_{10}-V_{11})\times$	22.9	1	25.9
23H	V ₃₄ ,	$V_3 + (V_2 - V_3) \times$			V _{34"}	$V_{11}+(V_{10}-V_{11})\times$		/	25.9
24H	V ₃₅	$V_3 + (V_2 - V_3) \times$	6.0 / 7.5 /	25.9 25.9	V _{35"}	$V_{11}+(V_{10}-V_{11})\times$	19.9 18.4	/	25.9
25H	V ₃₆	$V_3 + (V_2 - V_3) \times$	9.0		V _{36"}	$V_{11}+(V_{10}-V_{11})\times$		/	
26H	V _{38'}	$V_3 + (V_2 - V_3) \times$	10.5	25.9 25.9	V _{38"}	$V_{11}+(V_{10}-V_{11})\times$	16.9 15.4	/	25.9
27H	V ₃₉	$V_3 + (V_2 - V_3) \times$			V _{39"}	$V_{11}+(V_{10}-V_{11})\times$		/	
28H	V ₃₉	$V_3 + (V_2 - V_3) \times$		25.9	V _{39"}	$V_{11}+(V_{10}-V_{11})\times$	13.9	1	25.9
29H	V _{40'}	$V_3 + (V_2 - V_3) \times$		25.9	V _{40"}	$V_{11}+(V_{10}-V_{11})\times$	12.4	/	25.9
2AH	V ₄₁	$V_3 + (V_2 - V_3) \times$		25.9	V _{41"}	$V_{11}+(V_{10}-V_{11})\times$	10.9	/	25.9
2BH		$V_3 + (V_2 - V_3) \times V_3 + (V_2 - V_3) \times V_3 + (V_3 - V_3) \times V_3 $, ,	25.9		$V_{11}+(V_{10}-V_{11})\times$ $V_{11}+(V_{10}-V_{11})\times$	9.4	/	25.9
2CH	V _{43'}	V ₃ +(V ₂ -V ₃)×	18.0 / 19.5 /	25.9	V _{43"}	$V_{11}+(V_{10}-V_{11})\times$ $V_{11}+(V_{10}-V_{11})\times$	7.9	1	25.9
2DH	V ₄₄ '	V ₃ +(V ₂ -V ₃)×	, ,	25.9	V _{44"}	$V_{11}+(V_{10}-V_{11})\times$ $V_{11}+(V_{10}-V_{11})\times$	6.4	1	25.9
2EH	V _{45'}	V ₃ +(V ₂ -V ₃)×	21.0 /	25.9 25.9	V _{45"}	$V_{11}+(V_{10}-V_{11})\times$ $V_{11}+(V_{10}-V_{11})\times$	4.8 3.2	1	25.9
0511	1/	V . (V . V)			17	N/ (N/ N/ N		/	25.9
2FH 30H	V _{47'}	V ₃ +(V ₂ -V ₃)×	24.2 /	25.9	V _{47"}	V ₁₁ +(V ₁₀ -V ₁₁)×	1.6	/	25.9
31H	V _{48'}	V ₂ V ₂ +(V ₁ -V ₂)×	1.7 /	37.2	V _{48"}	V ₁₁ V ₁₂ +(V ₁₁ -V ₁₂)×	2F F	,	27.0
32H	V ₄₉	$V_2 + (V_1 - V_2) \times V_2 $		37.2	V _{49"}	V ₁₂ +(V ₁₁ -V ₁₂)×	35.5	/	37.2
33H	V _{50'}	$V_2 + (V_1 - V_2) \times V_2 $			V _{50"}	V ₁₂ +(V ₁₁ -V ₁₂)× V ₁₂ +(V ₁₁ -V ₁₂)×	33.8	/	37.2
34H	V ₅₁ '	$V_2 + (V_1 - V_2) \times V_2 $		37.2	V _{51"}	V ₁₂ +(V ₁₁ -V ₁₂)× V ₁₂ +(V ₁₁ -V ₁₂)×	32.1	/	37.2
35H	V _{52'}	$V_2 + (V_1 - V_2) \times V_2 $		37.2	V _{52"}	$V_{12}+(V_{11}-V_{12})\times$ $V_{12}+(V_{11}-V_{12})\times$	30.3	/	37.2
36H	V _{53'}	$V_2+(V_1-V_2)x$ $V_2+(V_1-V_2)x$	8.7 /	37.2	V _{53"}	$V_{12}+(V_{11}-V_{12})\times$ $V_{12}+(V_{11}-V_{12})\times$	28.5	/	37.2
36H		$V_2+(V_1-V_2)x$ $V_2+(V_1-V_2)x$	10.7 /	37.2			26.5	/	37.2
	V _{55'}		12.7 /	37.2	V _{55"}	V ₁₂ +(V ₁₁ -V ₁₂)×	24.5	/	37.2
38H	V _{56'}	V ₂ +(V ₁ -V ₂)×	15.2 /	37.2	V _{56"}	V ₁₂ +(V ₁₁ -V ₁₂)×	22.0	/	37.2
39H 3AH	V _{57'}	V ₂ +(V ₁ -V ₂)×	17.7	37.2	V _{57"}	V ₁₂ +(V ₁₁ -V ₁₂)×	19.5	/	37.2
3AH 3BH	V _{58'}	V ₂ +(V ₁ -V ₂)×	20.2 /	37.2	V _{58"}	V ₁₂ +(V ₁₁ -V ₁₂)×	17.0	/	37.2
_	V _{59'}	V ₂ +(V ₁ -V ₂)×	23.2 /	37.2	V _{59"}	V ₁₂ +(V ₁₁ -V ₁₂)×	14.0	/	37.2
3CH	V _{60'}	V ₂ +(V ₁ -V ₂)×	27.2	37.2	V _{60"}	V ₁₂ +(V ₁₁ -V ₁₂)×	10.0	/	37.2
3DH	V _{61'}	$V_2+(V_1-V_2)x$	32.2 /	37.2	V _{61"}	$V_{12}+(V_{11}-V_{12})x$	5.0	/	37.2
3EH	V _{62'}	V ₁			V _{62"}	V ₁₂			

Caution There is no connection between V_6 and V_7 terminal in the chip.

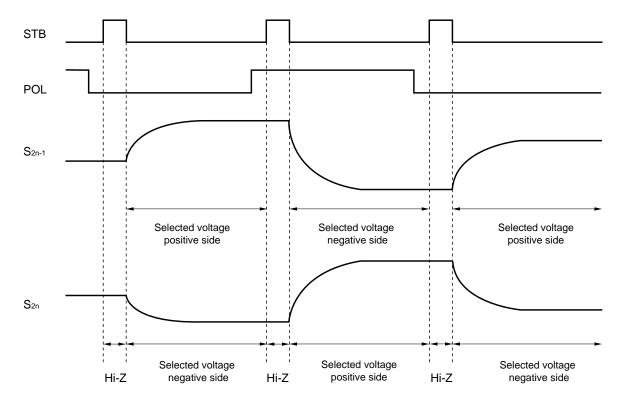
6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN

Data format: 6 bits \times 2 RGBs (6 dots) Input width: 36 bits (2-pixel data)

R,/L = H (Right shift)

Output	S ₁	S ₂	S ₃	S ₄	 S 479	S ₄₈₀
Data	D ₀₀ to D ₀₅	D ₁₀ to D ₁₅	D ₂₀ to D ₂₅	D ₃₀ to D ₃₅	 D40 to D45	D ₅₀ to D ₅₅

R,/L = L (Left shift)


Output	S ₁	S ₂	S₃	S ₄	 S479	S ₄₈₀
Data	D ₀₀ to D ₀₅	D ₁₀ to D ₁₅	D ₂₀ to D ₂₅	D ₃₀ to D ₃₅	 D ₄₀ to D ₄₅	D ₅₀ to D ₅₅

POL	S _{2n-1} Note	S _{2n} Note		
L	Vo to V6	V7 to V13		
Н	V7 to V13	Vo to Ve		

Note S_{2n-1} (Odd output), S_{2n} (Even output)

★ 7. RELATIONSHIP BETWEEN STB, POL, AND OUTPUT WAVEFORM

The output voltage is written to the LCD panel synchronized with the STB falling edge.

8. CURRENT CONSUMPTION REDUCTION FUNCTION

The μ PD16718 has a low power control function (LPC) which can switch the bias current of the output amplifier between two levels.

<Low power control function (LPC)>

The bias current of the output amplifier can be switched between two levels using this pin.

LPC = H or open: low power mode

LPC = L: normal power mode

The V_{DD2} of static current consumption can be reduced to two thirds of that in normal mode, input a stable DC current (V_{DD1}/V_{SS1}) to this pin.

10

9. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (TA = 25°C, Vss1 = Vss2 = 0 V)

Parameter	Symbol	Rating	Unit
Logic Part Supply Voltage	V _{DD1}	-0.5 to +4.0	V
Driver Part Supply Voltage	V _{DD2}	-0.5 to +17.0	V
Logic Part Input Voltage	V _{I1}	-0.5 to V _{DD1} + 0.5	V
Driver Part Input Voltage	V ₁₂	-0.5 to V _{DD2} + 0.5	V
Logic Part Output Voltage	V _{O1}	-0.5 to V _{DD1} + 0.5	V
Driver Part Output Voltage	V _{O2}	-0.5 to V _{DD2} + 0.5	V
Operating Ambient Temperature	TA	–10 to +75	°C
Storage Temperature	T _{stg}	-55 to +125	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Range ($T_A = -10 \text{ to } +75^{\circ}\text{C}$, $V_{SS1} = V_{SS2} = 0 \text{ V}$)

	<u> </u>	<u> </u>				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Logic Part Supply Voltage	V _{DD1}		2.5	3.3	3.6	٧
Driver Part Supply Voltage	V _{DD2}		10.0	11.5	12.5	V
High-Level Input Voltage	VIH		0.7 V _{DD1}		V _{DD1}	V
Low-Level Input Voltage	VIL		0		0.3 V _{DD1}	٧
γ -Corrected Voltage	Vo to V ₁₃		0.1		V _{DD2} – 0.1	٧
Driver Part Output Voltage	Vo		0.1		V _{DD2} – 0.1	V
Clock Frequency	fclk	V _{DD1} = 2.5 V			57	MHz

Data Sheet S15423EJ1V0DS 11

Electrical Characteristics (TA = -10 to +75°C, VDD1 = 2.5 to 3.6 V, VDD2 = 10.0 to 12.5 V, VSS1 = VSS2 = 0 V, LPC = L)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input Leak Current	lıL	Except Osel, LPC, R,/L			±1.0	μΑ
Pull-up Resistance Value	Rpu	LPC, R,/L	100	190	500	kΩ
Pull-downResistance Value	RPD	Osel	25	50	150	kΩ
High-Level Output Voltage	Vон	STHR (STHL), IOH = 0 mA	V _{DD1} - 0.1			V
Low-Level Output Voltage	Vol	STHR (STHL), IoL = 0 mA			0.1	V
γ -Corrected Resistance	lγ	$V_{DD2} = 12.5 \text{ V}, V_0 \text{ to } V_6 = V_7 \text{ to } V_{13} = 5.0 \text{ V}$	8.7	14.5	20.3	kΩ
Driver Output Current	Іvон	$Vx = 11.0 \text{ V}, V_{OUT} = 10.5 \text{ V}^{Note}$		-50	-20	μΑ
	Ivol	Vx = 0.5 V, Vout = 1.0 V ^{Note}	20	55		μΑ
Output Voltage Deviation	ΔVο	Vo = 1.2 V to V _{DD2} – 1.2 V		±10	±20	mV
		Vo = 1.0 to 1.2 V		±13	±25	mV
		$V_0 = V_{DD2} - 1.2 \text{ V to } V_{DD2} - 1.0 \text{ V}$				
Output swing difference	ΔV_{P-P1}	$V_0 = 5.4 \text{ V to } V_{DD2} - 5.4 \text{ V}$		±5	±10	mV
deviation	ΔV_{P-P2}	Vo = 1.9 to 5.4 V		±8	±15	mV
		$V_0 = V_{DD2} - 5.4 \text{ V to } V_{DD2} - 1.9 \text{ V}$				
	ΔV_{P-P3}	Vo = 1.0 to 1.9 V		±15	±20	mV
		$V_0 = V_{DD2} - 1.0 \text{ V to } V_{DD2} - 1.9 \text{ V}$				
Logic Part Dynamic Current	I _{DD1}	V _{DD1} = 3.3 V		0.6	11	mA
Consumption						
Driver Part Dynamic Current	I _{DD2}	V _{DD2} = 11.5 V, with no load, LPC = L		5.4	10	mA
Consumption						

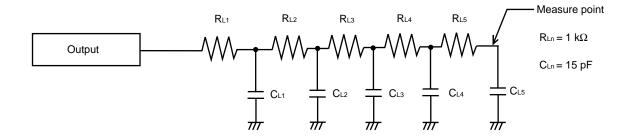
Note Vx refers to the output voltage of analog output pins S1 to S480.

Vout refers to the voltage applied to analog output pins S1 to S480.

Cautions 1. fstb = 50 kHz, fclk = 40 MHz.

- 2. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured values in the dot checkerboard input pattern.
- 3. Refers to the current consumption per driver when cascades are connected under the assumption of UXGA single-sided mounting (10 units).

12

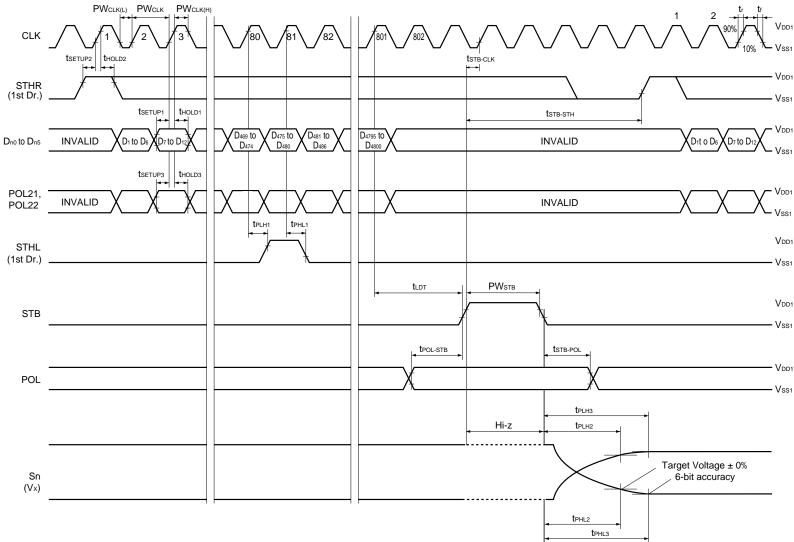

Electrical Characteristics (TA = -10 to +75°C, VDD1 = 2.5 to 3.6 V, VDD2 = 10.0 to 12.5 V, VSS1 = VSS2 = 0 V, LPC = L)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Start Pulse Delay Time	t PLH1	C _L = 15 pF			15	ns
	t PKL1				15	ns
Driver Output Delay Time	t _{PLH2} Note1	$C_L = 75 \text{ pF}, R_L = 5 \text{ k}\Omega$		3.8	6	μs
	tPLH3 Note2			6.7	10	μs
	tPHL2 Note1			3.8	6	μs
	tPHL3 Note2			6.1	10	μs
Input Capacitance	Cıı	STHR (STHL) excluded, T _A = 25°C			10	pF
	Cı2	STHR (STHL),TA = 25°C			15	pF

Notes 1. tplh2/tphl2 are specified as the time it takes to reach the target voltage $\pm 10\%$ (condition: Vo = 0.1 to 12.4 V).

2. t_{PLH3}/t_{PHL3} are specified as the time it takes to reach the target voltage $\pm 2\%$ (condition: $V_0 = 0.1$ to 12.4 V).

★ <Measurement Condition>


Data Sheet S15423EJ1V0DS 13

Timing Requirement (T_A = -10 to +75°C, V_{DD1} = 2.5 to 3.6 V, V_{SS1} = 0 V, t_r = t_f = 5.0 ns)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock Pulse Width	PWclk		17			ns
Clock Pulse High Period	PW _{CLK(H)}		4			ns
Clock Pulse Low Period	PW _{CLK(L)}		4			ns
Data Setup Time	tsetup1		3			ns
Data Hold Time	tHOLD1		0			ns
Start Pulse Setup Time	tsetup2		3			ns
Start Pulse Hold Time	tHOLD2		0			ns
POL21, POL22 Setup Time	tsetup3		3			ns
POL21, POL22 Hold Time	thold3		0			ns
STB Pulse Width	PWstB		2			CLK
Last Data Timing	t ldt		2			CLK
STB-CLK Time	tstb-clk	STB $\uparrow \rightarrow$ CLK \uparrow	7			ns
Time between STB and Start Pulse	tsтв-sтн	STB $\uparrow \rightarrow$ STHR (STHL) \uparrow	2			CLK
POL-STB Time	tPOL-STB	POL \uparrow or $\downarrow \rightarrow$ STB \uparrow	- 5			ns
STB-POL Time	tstb-pol	$STB \downarrow \to POL \downarrow or \uparrow$	6	-	-	ns

Remark Unless otherwise specified, the input level is defined to be $V_{IH} = 0.7 \text{ Vdd}$, $V_{IL} = 0.3 \text{ Vdd}$.

 V_{DD1} V_{SS1} V_{DD1} Vss1

Data Sheet S15423EJ1V0DS

10. RECOMMENDED SOLDERING CONDITIONS

The following conditions must be met for soldering conditions of the μ PD16718.

For more details, refer to the Semiconductor Device Mounting Technology Manual (C10535E).

Please consult with our sales offices in case other soldering process is used, or in case the soldering is done under different conditions.

μ PD16718N-xxx: TCP (TAB package)

Mounting Condition	Mounting Method	Condition
Thermocompression	Soldering	Heating tool 300 to 350°C: heating for 2 to 3 seconds: pressure 100g (per solder)
	ACF (Adhesive Conductive Film)	Temporary bonding 70 to 100°C: pressure 3 to 8 kg/cm²: time 3 to 5 seconds. Real bonding 165 to 180°C: pressure 25 to 45 kg/cm²: time 30 to 40
		seconds. (When using the anisotropy conductive film SUMIZAC1003 of Sumitomo Bakelite, Ltd.)

Caution To find out the detailed conditions for packaging the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more packaging methods at a time.

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Data Sheet S15423EJ1V0DS

19

Reference Documents

NEC Semiconductor Device Reliability / Quality Control System (C10983E)

Quality Grades On NEC Semiconductor Devices (C11531E)

- The information in this document is current as of December, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4