300 OUTPUT TFT-LCD SORCE DRIVER (COMPATIBLE WITH 64 GRAY SCALES)

The μ PD16714 is a source driver for TFT-LCD's capable of dealing with displays with 64 gray scales. Data input is based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors by output of 64 values γ-corrected by an internal D/A converter and 5-by-2 external power modules. Because the output dynamic range is as large as 9.8 VP-P, level inversion operation of the LCD's common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a maximum clock frequency of 45 MHz when driving at 3.0 V , this driver is applicable to SVGA-standard TFT-LCD panels.

FEATURES

- Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and a D/A converter
- Output dynamic range 9.8 VP-P min. (@ VdD2 = 10.0 V)
- CMOS level input
- Input of 6 bits (gradation data) by 6 dots
- High-speed data transfer: fmax. $=45 \mathrm{MHz}$ (internal data transfer speed when operating at 3.0 V)
- 300 outputs
- Apply for only dot inversion
- Display data inversion function (POL2 terminal.)
- Single bank arrangement is possible (loaded with slim TCP)

ORDERING INFORMATION

Part Number	Package
μ PD16714N $-\times \times \times$	TCP (TAB package)

The TCP's external shape is customized. To order your TCP's external shape, please contact a NEC salesperson.

1. BLOCK DIAGRAM

2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER

3. PIN CONFIGURATION (μ PD16714N $-\times \times \times$) (Copper Plated Surface)

This figure does not specify the TCP package

4. PIN FUNCTIONS

Pin Symbol	Pin Name	Description
S_{1} to S_{300}	Driver output	The D/A converted 64-gray-scale analog voltage is output.
D00 to D05	Display data input	The display data is input with a width of 36 bits, viz., the gray scale data (6 bits) by 6 dots (2 pixels). Dxo: LSB, Dx5: MSB
D10 to D15		
D20 to D25		
D30 to D35		
D40 to D45		
D50 to D55		
R/L	Shift direction control input	These refer to the start pulse input/output pins when driver ICs are connected in cascade. The shift directions of the shift registers are as follows. $\begin{array}{lll} \mathrm{R} / \overline{\bar{L}}=\mathrm{H} & : & \text { STHR (input), } \mathrm{S}_{1} \rightarrow \mathrm{~S}_{300}, \text { STHL (output) } \\ \mathrm{R} / \overline{\mathrm{L}}=\mathrm{L} & : & \mathrm{STHL} \text { (input), } S_{300} \rightarrow S_{1}, \text { STHR (output) } \\ \hline \end{array}$
STHR	Right shift start pulse input/output	$R / \bar{L}=H$ $:$ Becomes the start pulse input pin. $R / \bar{L}=L$ $:$ Becomes the start pulse output pin.
STHL	Left shift start pulse input/output	$R / \bar{L}=H$ $:$ Becomes the start pulse output pin. $R / \bar{L}=L \quad$ $:$ Becomes the start pulse input pin.
CLK	Shift clock input	Refers to the shift register's shift clock input. The display data is incorporated into the data register at the rising edge. At the rising edge of the 50th clock after the start pulse input, the start pulse output reaches the high level, thus becoming the start pulse of the next-level driver. The initial-level driver's 50th clock becomes valid as the next-level driver's start pulse is input. If 52 nd clock pulses are input after input of the start pulse, input of display data is halted automatically. The contents of the shift register are cleared at the STB's rising edge.
STB	Latch input	The contents of the data register are transferred to the latch circuit at the rising edge. And, at the falling edge, the gray scale voltage is supplied to the driver. It is necessary to ensure input of one pulse per horizontal period.
POL	Polarity input	$\mathrm{POL}=\mathrm{L}$; The $\mathrm{S}_{2 n-1}$ output uses V_{0} to V_{4} as the reference supply; The $\mathrm{S}_{2 n}$ output uses V_{5} to V_{9} as the reference supply. $\mathrm{POL}=\mathrm{H}$; The $\mathrm{S}_{2 n-1}$ output uses V_{5} to V_{9} as the reference supply; The $\mathrm{S}_{2 n}$ output uses V_{0} to V_{4} as the reference supply.
POL2	Data inversion	$\begin{array}{\|ll\|} \hline \text { POL2 }=\mathrm{H}: & \text { Display data is inverted. } \\ \text { POL2 }=\mathrm{L}: & : \\ \text { Display data is not inverted. } \\ \hline \end{array}$
V_{0} to V_{9}	γ-corrected power supplies	Input the g-corrected power supplies from outside by using operational amplifier. Make sure to maintain the following relationships. During the gray scale voltage output, be sure to keep the gray scale level power supply at a constant level. $\mathrm{V}_{\mathrm{DD} 2}>\mathrm{V}_{0}>\mathrm{V}_{1}>\mathrm{V}_{2}>\mathrm{V}_{3}>\mathrm{V}_{4}>\mathrm{V}_{5}>\mathrm{V}_{6}>\mathrm{V}_{7}>\mathrm{V}_{8}>\mathrm{V}_{9}>\mathrm{V}_{\mathrm{SS} 2}$
TEST	Test pin	Set it "Open."
VDD1	Logic power supply	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
VDD2	Driver power supply	10.0 V to 13.5 V
Vss1	Logic ground	Grounding
Vss2	Driver ground	Grounding

Cautions 1. The power start sequence must be $V_{D D 1}$, logic input, and $V_{D D 2} \& V_{0}$ to V_{9} in that order.
Reverse this sequence to shut down. (Simultaneous power application to $V_{d D 2}$ and V_{0} to V_{9} is possible.)
2. To stabilize the supply voltage, please be sure to insert a $0.1 \mu \mathrm{~F}$ bypass capacitor between $\mathrm{V}_{\mathrm{DD} 1}-$ $V_{S S 1}$ and $V_{D D 2}-V_{S S 2}$. Furthermore, for increased precision of the D/A converter, insertion of a bypass capacitor of about $0.01 \mu \mathrm{~F}$ is also advised between the γ-corrected power supply terminals ($\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{2}, \cdots, \mathrm{~V}_{9}$) and $\mathrm{V}_{\mathrm{ss} 2}$.

5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE

This product incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively gray scale voltages of differing polarity with respect to the LCD's counter electrode (common electrode) voltage. The D/A converter consists of ladder resistors and switches. The ladder resistors ro to r62 are so designed that the ratios between the LCD panel's γ-corrected voltages and V_{0} to $V_{63}{ }^{\prime}$ and $V_{0 "}$ to $V_{63 "}$ are roughly equal; and their respective resistance values are as shown on page 9 . Among the 5 -by- 2γ-corrected voltages, input gray scale voltages of the same polarity with respect to the common voltage, for the respective five γ-corrected voltages of V_{0} to V_{4} and V_{5} to V.

Figure 1 shows the relationship between the driving voltages such as liquid-crystal driving voltages Vdd2 and Vss2, common electrode potential $\mathrm{V}_{\text {сом }}$, and γ-corrected voltages V_{0} to V_{9} and the input data. Be sure to maintain the voltage relationships of $\mathrm{V}_{\mathrm{DD} 2}>\mathrm{V}_{0}>\mathrm{V}_{1}>\mathrm{V}_{2}>\mathrm{V}_{3}>\mathrm{V}_{4}>\mathrm{V}_{5}>\mathrm{V}_{6}>\mathrm{V}_{7}>\mathrm{V}_{8}>\mathrm{V}_{9}>\mathrm{V}_{58}$.

Figures 2-1 and 2-2 show the relationship between the input data and the output data. Table 1 shows the resistance values of the resistor strings.

This driver IC is designed for single-sided mounting. Therefore, please do not use it for γ-corrected power supply level inversion in double-sided mounting. Because the current flowing through ladder resistors ro to r 62 is small, its use for double-sided mounting impairs the IC's stable operation when the level of the γ-corrected power supply terminal is inverted thus causing display failures.

Figure 1. Relationship Between Input Data and Output Voltage:

(POL2=L)

Figure 2-1. Relationship Between Input Data and Output Voltage: $V_{D D 2}>V_{0}>V_{1}>V_{2}>V_{3}>V_{4}>V_{5}$

Caution Between V_{4} and V_{5} terminal is connected by using the resistor ($9 \mathrm{k} \Omega$) in the chip.

Figure 2-2. Relationship Between Input Data and Output Voltage: $V_{4}>V_{5}>V_{6}>V_{7}>V_{8}>V_{9}>V_{s s 2}$

Caution Between V_{4} and V_{5} terminal is connected by using the resistor ($9 \mathrm{k} \Omega$) in the chip.

Ladder Resistance Value (ro to r_{62}): Reference Value

6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN

Data format : 6 bits $\times 2$ RGBs (6 dots)
Input width : 36 bits (2-pixel data)
$R / \bar{L}=H($ Right shift $)$

Output	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	\ldots	$\mathrm{~S}_{299}$	$\mathrm{~S}_{300}$
Data	$\mathrm{D}_{00}-\mathrm{D}_{05}$	$\mathrm{D}_{10}-\mathrm{D}_{15}$	$\mathrm{D}_{20}-\mathrm{D}_{25}$	$\mathrm{D}_{30}-\mathrm{D}_{35}$	\ldots	$\mathrm{D}_{40}-\mathrm{D}_{45}$	$\mathrm{D}_{50}-\mathrm{D}_{55}$

$R / \bar{L}=L$ (Left shift)

Output	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	\ldots	$\mathrm{~S}_{299}$	$\mathrm{~S}_{300}$
Data	$\mathrm{D}_{00}-\mathrm{D}_{05}$	$\mathrm{D}_{10}-\mathrm{D}_{15}$	$\mathrm{D}_{20}-\mathrm{D}_{25}$	$\mathrm{D}_{30}-\mathrm{D}_{35}$	\ldots	$\mathrm{D}_{40}-\mathrm{D}_{45}$	$\mathrm{D}_{50}-\mathrm{D}_{55}$

POL	$S_{2 n-1}$	$S_{2 n}$
L	V_{0} to V_{4}	V_{5} to V_{9}
H	V_{5} to V_{9}	V_{0} to V_{4}

$S_{2 n-1}$ (Odd output), $\mathrm{S}_{2 n}$ (Even output) $\mathrm{n}=1,2, \cdots \cdot, 150$
7. RELATIONSHIP BETWEEN STB, AND OUTPUT WAVEFORM

8. CAUTIONS ABOUT FRAME INVERSION

In the case of dot inversion, n frame last line and $(n+1)$ frame first line is the same polarity. When write the same polarity twice, there are two cases as follows.
(1) last line output in n frame $>$ first line output in $(n+1)$ frame \rightarrow Possible to write
(2) last line output in n frame < first line output in $(n+1)$ frame \rightarrow Not possible to write
μ PD16714 has charge buffer and discharge buffer, so need to inversion polarity and write in the case of both ways.

9. ELECTRIC SPECIFICATION

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}\right)$

Parameter	Symbol	Rating	Unit
Logic Part Supply Voltage	V_{DD}	$-0.5 \sim+6.5$	V
Driver Part Supply Voltage	$\mathrm{V}_{\mathrm{DD} 2}$	$-0.5 \sim+15.0$	V
Logic Part Input Voltage	V_{11}	$-0.5 \sim \mathrm{~V}_{\mathrm{DD} 1}+0.5$	V
Driver Part Input Voltage	V_{12}	$-0.5 \sim \mathrm{~V}_{\mathrm{DD} 2}+0.5$	V
Logic Part Output Voltage	$\mathrm{V}_{\mathrm{O} 1}$	$-0.5 \sim \mathrm{~V}_{\mathrm{DD} 1}+0.5$	V
Driver Part Output Voltage	$\mathrm{V}_{\mathrm{O} 2}$	$-0.5 \sim \mathrm{~V}_{\mathrm{DD} 2}+0.5$	V
Operating Temperature Range	T_{A}	$-10 \sim+75$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

Recommended Operating Condition ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Logic Part Supply Voltage	VDD1	3.0	3.0	3.6	V
Driver Part Supply Voltage	VDD2	10.0	10.5	13.5	V
High-Level Input Voltage	VIH	0.7dD1		VDD1	V
Low-level Input Voltage	VIL	Vss1		$0.3 \mathrm{VDD1}$	V
γ-Corrected Voltage	V o $\sim \mathrm{V}_{9}$	V ss2 +0.05		VDD2 -0.05	V
Driver Part Output Voltage	Vo	$\mathrm{Vss2}+0.1$		VdD2 -0.1	V
Maximum Clock Frequency	$f_{\text {max }}$.	45			MHz

Electrical Specifications ($\mathrm{T}_{\mathrm{A}}=-10$ to $\left.+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=10.5 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{Vss}_{1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}\right)$

Parameter	Symbol	Condition		MIN.	TYP.	$\frac{\text { MAX. }}{ \pm 1.0}$	$\frac{\text { Unit }}{\mu \mathrm{A}}$
Input Leak Current	ILL						
High-Level Output Voltage	Vон	STHR (STHL),	$=0 \mathrm{~mA}$	VDD1 -0.1			V
Low-level Output Voltage	VoL	STHR (STHL)	$=0 \mathrm{~mA}$			0.1	V
γ-Corrected Supply Current	${ }^{\prime} \gamma$	V - $\mathrm{V}_{9}=10 \mathrm{~V}$	Vo, V9		0.3	0.5	mA
Driver Output Current	Vvoh	$\mathrm{Vx}=9 \mathrm{~V}$, Vout $=3 \mathrm{~V}^{\text {Note }}$				-0.3	mA
	VvoL	$\mathrm{V} x=3 \mathrm{~V} \text {, Vout }=9 \mathrm{~V}^{\text {Note }}$		0.3			mA

Note $\mathrm{V} x$ refers to the output voltage of analog output pins S_{1} to S_{300}.
Vout refers to the voltage applied to analog output pins S_{1} to S_{300}.

Electrical Specifications ($\mathrm{T}_{\mathrm{A}}=-10$ to $\left.+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=10.5 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}\right)$

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Output Voltage Deviation ${ }^{\text {Note } 1}$	$\Delta \mathrm{V}$ 。	Input data		± 5	± 20	mV
Average Output Voltage Variation	$\Delta \mathrm{V}_{\mathrm{AV}}$	Input data		± 10		mV
Output Voltage range	Vo	Input data	0.1		VDD2 -0.1	V
Logic Part Dynamic Current Consumption	ldo1	VDD1, No loads		1.5	10.0	mA
Driver Part Dynamic Current Consumption $1^{\text {Note 3, }} 4$	lod21	$V_{D D 2}=10.5 \mathrm{~V} \pm 0.5 \mathrm{~V} \text {, No }$ loads		4.4	8.0	mA
Driver Part Dynamic Current Consumption $1^{\text {Note 3, } 4}$	IDD22	$V_{D D 2}=13.5 \mathrm{~V} \pm 0.5 \mathrm{~V} \text {, No }$ loads		6.4	10.0	mA

Notes 1. The output voltage deviation refers to the voltage difference between adjoining output pins when the display data is the same (within the chip).
2. The average output voltage variation refers to the average output voltage difference between chips. The average output voltage refers to the average voltage between chips when the display data is the same.
3. The STB cycle is defined to be $20 \mu \mathrm{~s}$ at fclk $=40 \mathrm{MHz}$. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured values in the dot checkerboard input pattern.
4. Refers to the current consumption per driver when cascades are connected under the assumption of SVGA single-sided mounting (8 units).

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=10.5 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Start Pulse Delay Time	tPLH1	$\mathrm{CL}=25 \mathrm{pF}$		10	15	ns
Driver Output Delay Time 1	tPLH2	$\mathrm{CL}=50 \mathrm{pF}, \mathrm{RL}=50 \mathrm{k} \Omega$		6.5	11	$\mu \mathrm{~s}$
Driver Output Delay Time 2	tPLH3	$\mathrm{CL}=50 \mathrm{pF}, \mathrm{RL}=50 \mathrm{k} \Omega$		10	17	$\mu \mathrm{~s}$
Driver Output Delay Time 3	tPHL2	$\mathrm{CL}=50 \mathrm{pF}, \mathrm{RL}=50 \mathrm{k} \Omega$		6.5	11	$\mu \mathrm{~s}$
Driver Output Delay Time 4	tPHL3	$\mathrm{CL}=50 \mathrm{pF}, \mathrm{RL}=50 \mathrm{k} \Omega$		10	17	$\mu \mathrm{~s}$
Input Capacitance 1	Cl_{11}	$\mathrm{STHR}(\mathrm{STHL})$ excluded, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6	15	pF
Input Capacitance 2	Cl_{12}	$\mathrm{STHR}(\mathrm{STHL})$, $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6	15	pF

Timing Requirement ($\mathrm{T}_{\mathrm{A}}=-10$ to $\left.+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}, \mathrm{tr}_{\mathrm{r}}=\mathrm{tr}_{\mathrm{r}}=8.0 \mathrm{~ns}\right)$

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock Pulse Width	PWack		22			ns
Clock Pulse Low Period	PWCLK (H)		6			ns
Clock Pulse High Period	PWCLK (L)		6			ns
Data Setup Time	tsetup1		6			ns
Data Hold Time	thold1		6			ns
Start Pulse Setup Time	tsetup2		6			ns
Start Pulse Hold Time	thold2		6			ns
POL2 Setup Time	tsetup3		6			ns
POL2 Hold Time	thold3		6			ns
Start Pulse Low Period	tspL		6			ns
STB Pulse Width	PWstb		0.5			$\mu \mathrm{s}$
Data Invalid Period	tinv		1			CLK
Last Data Timing	tlot		2			CLK
CLK - STB Time	tcle - stb	CLK $\uparrow \rightarrow$ STB \downarrow	6			ns
STB - CLK Time	tstb - CLK	STB $\downarrow \rightarrow$ CLK \uparrow	6			ns
Time Between STB and Start Pulse	tstb - ¢тн	STB $\downarrow \rightarrow$ STHR (L)	60			ns
POL - STB Time	tpol - StB	POL \uparrow or $\downarrow \rightarrow$ STB \uparrow	-5			ns
STB - POL Time	tste - PoL	STB $\downarrow \rightarrow$ POL \downarrow or \uparrow	6			ns

RECOMMENDED MOUNTING CONDITIONS

When mounting this product, please make sure that the following recommended conditions are satisfied.
For packaging methods and conditions other than those recommended below, please contact NEC sales personnel.

Mounting Condition	Mounting Method	Condition
Thermocompression	Soldering	Heating tool 300 to $350^{\circ} \mathrm{C}$, heating for 2 to 3 sec; pressure 100 g (per solder)
	ACF (Adhesive Conductive Film)	Temporary bonding 70 to $100^{\circ} \mathrm{C}$; pressure 3 to $8 \mathrm{~kg} / \mathrm{cm}^{2} ;$ time 3 to 5 sec. Real bonding 165 to $180^{\circ} \mathrm{C} ;$ pressure 25 to $45 \mathrm{~kg} / \mathrm{cm}^{2}$, time 30 to 40 secs. (When using the anisotropy conductive film SUMIZAC1003 of Sumitomo Bakelite, Ltd)

Caution To find out the detailed conditions for packaging the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more packaging methods at a time.

Reference

NEC Semiconductor Device Reliability/Quality Control System (C10983E)
Quality Grades to NEC's Semiconductor Devices (C11531E)

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

