300/309 OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 64 GRAY SCALE)

DESCRIPTION

The μ PD16710 is a source driver for TFT-LCDs capable of dealing with displays with 64 gray scale. Data input is based on digital input configured as 6 bits by 6 dots (1 pixel), which can realize a full-color display of 260,000 colors by output of 64 values γ-corrected by an internal D/A converter and 9-by-2 external power modules. Because the output dynamic range is as large as $9.8 \mathrm{VP-P}$, level inversion operation of the LCD's common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a maximum clock frequency of 45 MHz when driving at 3.0 V , this driver is applicable to SVGA/XGA-standard TFT-LCD panels.

FEATURES

- Capable of outputting 64 values by means of 9-by-2 external power modules (18 units) and a D/A converter
- Output dynamic range 9.8 Vp-p min. ($@$ Vdd2 $=10.0 \mathrm{~V}$)
- CMOS level input
- Input of 6 bits (gray scale data) by 3 dots
- High-speed data transfer: $f_{\max .}=45 \mathrm{MHz}$ (internal data transfer speed when operating at 3.0 V)
- 300/309 outputs
- Dedicated to dot inversion
- Input data inversion function (POL2)
- Single-sided mounting possible (loaded with slim TCP)

ORDERING INFORMATION

Part Number	Package
μ PD16710N $-\times \times \times$	TCP (TAB)

The TCP's external shape is customized. To order your TCP's external shape, please contact a NEC salesperson.

1. BLOCK DIAGRAM

2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER

3. PIN CONNECTION DIAGRAM (μ PD16710N $-\times \times \times$) (TOP VIEW OF COPPER FOIL SURFACE)

Caution This diagram does not represent the actual shape of TCP.
LPC is internally pulled up to Vod1.

4. PIN FUNCTIONS

Pin Symbol	Pin Name	Description
S1 to S300/309	Driver output	The D/A converted 64-gray-scale analog voltage is output.
Doo to Do5	Display data input	The display data is input with a width of 18 bits, viz., the gray scale data (6 bits) by 3 dots (1 pixel). Dxo: LSB, Dx5: MSB
D_{10} to D_{15}		
D_{20} to D_{25}		
R/L	Shift direction switching input pin	Shift direction switching pin of shift register. The shift directions are as follows. $R / \bar{L}=H$ (right shift) : STHR (input) $\rightarrow S_{1} \rightarrow S_{300 / 309} \rightarrow$ STHL (output) $\mathrm{R} / \overline{\mathrm{L}}=\mathrm{L}$ (left shift) : STHL (input) $\rightarrow \mathrm{S}_{300 / 309} \rightarrow \mathrm{~S}_{1} \rightarrow$ STHR (output)
STHR	Right shift start pulse input/output	Start pulse I/O pins when two or more μ PD16710's are connected in cascade. When H level of these pins is read at the rising edge of CLK, input of display data is started. In the case of right shift, STHR serves as an input pin and STHL serves as an output pin. In the case of left shift, STHL serves as an input pin and STHR serves as an output pin.
STHL	Left shift start pulse input/output	
CLK	Shift clock input	Shift clock input to shift register. Display data is loaded to the data register at the rising edge of this signal. The start pulse output goes high and is used as the start pulse for the driver on the next stage at the rising edge of the 103rd clock in the 309 -output mode (100 th clock in the 300 -output mode). When 105 clock pulses (102 pulses in the 300 -output mode) are input after the start pulse has been input, loading the display data is automatically stopped, and the contents of the shift register are cleared at the rising edge of STB.
STB	Latch input	The contents of the data register are transferred to the latch at the rising edge. And, at the falling edge, the gray scale voltage is supplied to the driver. It is necessary to ensure input of one pulse per horizontal period.
Osel	Number of output pins select pin	This pin selects the number of output pins. $\mathrm{O}_{\text {sel }}$ = L: 309-output mode Osel $=$ H: 300-output mode
POL	Polarity input	$\mathrm{POL}=\mathrm{L}$; $\mathrm{S}_{2 n-1}$ output uses V_{9} to V_{17} and $\mathrm{S}_{2 n}$ output uses V_{0} to V_{8} as the reference power supply. $\mathrm{POL}=\mathrm{H}$; $\mathrm{S}_{2 n-1}$ output uses V_{0} to V_{8} and $\mathrm{S}_{2 n}$ output uses V_{9} to V_{17} as the reference power supply. $\mathrm{S}_{2 n-1}$ indicates odd-numbered output pins and $\mathrm{S}_{2 n}$ indicates even-numbered output pins. The POL signal is input after a specified setup time (tpol-stв) from the rising edge of STB.
POL2	Data inversion	POL2 $=\mathrm{H}$: Data is internally inverted in the IC. POL2 $=\mathrm{L}$: The input data is not inverted.
LPC	Low-power control input	Reduces current consumption by cutting off the constant-current supply to the output buffer. In the low-power mode (LPC = H: DC level can be input), the static current consumption can be reduced.
Voto V_{17}	γ-corrected power supplies	Input the γ-corrected power supplies from outside. Make sure to maintain the following relationships. During the gray scale voltage output, be sure to keep the gray scale level power supply at a constant level. $\mathrm{V}_{\mathrm{DD} 2}>\mathrm{V}_{0}>\mathrm{V}_{1}>\mathrm{V}_{2}>\mathrm{V}_{3}>\mathrm{V}_{4}>\mathrm{V}_{5}>\mathrm{V}_{6}>\mathrm{V}_{7}>\mathrm{V}_{8}>\mathrm{V}_{9}>\mathrm{V}_{10}>\mathrm{V}_{11}>\mathrm{V}_{12}>\mathrm{V}_{13}>\mathrm{V}_{14}>$ $V_{15}>V_{16}>V_{17}>V_{\text {SS } 2}$
VDD1	Logic part power supply	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
VDD2	Driver part power supply	9.0 V to 12.5 V
Vss1	Logic ground	Grounding
Vss2	Driver ground	Grounding

5. CAUTIONS

(1) The power start sequence must be $V_{D D 1}$, logic input, and $V_{D D 2} \& V_{0}$ to V_{17} in that order. Reverse this sequence to shut down. (Simultaneous power application to $\mathrm{V}_{\mathrm{DD} 2}$ and V_{0} to V_{17} is possible.)
(2) To stabilize the supply voltage, please be sure to insert a $0.1 \mu \mathrm{~F}$ bypass capacitor between VdD1-Vss1 and VdD2Vss2. Furthermore, for increased precision of the D/A converter, insertion of a bypass capacitor of about $0.01 \mu \mathrm{~F}$ is also advised between the γ-corrected power supply terminals $\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{2}, \cdots, \mathrm{~V}_{17}\right)$ and $\mathrm{V}_{\mathrm{ss} 2}$.

6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE

This product incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively gray scale voltages of differing polarity with respect to the LCD's counter electrode (common electrode) voltage. The D/A converter consists of ladder resistors and switches. The ladder resistors ro to r62 are so designed that the ratios between the LCD panel's γ-corrected voltages and V_{0} ' to V_{63} ' and V_{0} " to V_{63} " are roughly equal; and their respective resistance values are as shown on page 9. Among the 9 -by- 2γ-corrected voltages, input gray scale voltages of the same polarity with respect to the common electrode, for the respective nine γ-corrected voltages of V_{0} to V_{8} and V_{9} to V_{17}.

Figure 1 shows the relationship between the driving voltages such as liquid-crystal driving voltages VdD2 and Vss2, common electrode potential $\mathrm{V}_{\text {сом }}$, and γ-corrected voltages V_{0} to V_{17} and the input data. Be sure to maintain the voltage relationships of $V_{\text {DD2 }}>V_{0}>V_{1}>V_{2}>V_{3}>V_{4}>V_{5}>V_{6}>V_{7}>V_{8}>V_{9}>V_{10}>V_{11}>V_{12}>V_{13}>V_{14}>V_{15}>$ $\mathrm{V}_{16}>\mathrm{V}_{17}>\mathrm{V}_{\text {ss2 }}$. Figures 2-1 and 2-2 show the relationship between the input data and the output data. Table 1 shows the resistance values of the resistor strings.

This driver IC is designed for dot inversion in single-sided mounting. Therefore, please do not use it in doublesided mounting.

Figure 1. Relationship Between Input Data and Output Voltage

7. RESISTOR STRINGS

(Relationship Between Input Data and Output Voltage: $V_{D D 2}>V_{0}>V_{1}>V_{2}>V_{3}>V_{4}>V_{5}>V_{6}>V_{7}>V_{8}>V_{9}$)
Figure 2-1

Data	Dx5	Dx4	Dх3	Dx2	Dx1	Dxo	Output Voltage	
00н	0	0	0	0	0	0	Vo'	Vo
01H	0	0	0	0	0	1	$\mathrm{V}_{1}{ }^{\prime}$	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 7 / 8$
02H	0	0	0	0	1	0	$\mathrm{V}_{2}{ }^{\prime}$	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 6 / 8$
03н	0	0	0	0	1	1	$\mathrm{V}_{3}{ }^{\prime}$	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 5 / 8$
04H	0	0	0	1	0	0	$V_{4}{ }^{\prime}$	$V_{1}+\left(V_{0}-V_{1}\right) \times 4 / 8$
05	0	0	0	1	0	1	$V_{5}{ }^{\prime}$	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 3 / 8$
06\%	0	0	0	1	1	0	V6'	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 2 / 8$
07H	0	0	0	1	1	1	$\mathrm{V}_{7}{ }^{\prime}$	$\mathrm{V}_{1}+\left(\mathrm{V}_{0}-\mathrm{V}_{1}\right) \times 1 / 8$
08H	0	0	1	0	0	0	$V_{8}{ }^{\prime}$	V_{1}
09н	0	0	1	0	0	1	$\mathrm{V}_{9}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 7 / 8$
ОАн	0	0	1	0	1	0	$\mathrm{V}_{10}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 6 / 8$
OBн	0	0	1	0	1	1	$\mathrm{V}_{11}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 5 / 8$
0 CH	0	0	1	1	0	0	$V_{12}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 4 / 8$
0Dh	0	0	1	1	0	1	$V_{13}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 3 / 8$
ОЕн	0	0	1	1	1	0	$V_{14}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 2 / 8$
OFH	0	0	1	1	1	1	$V_{15}{ }^{\prime}$	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 1 / 8$
10 H	0	1	0	0	0	0	$\mathrm{V}_{16}{ }^{\prime}$	V_{2}
11H	0	1	0	0	0	1	$\mathrm{V}_{17}{ }^{\prime}$	$V_{3}+\left(V_{2}-V_{3}\right) \times 7 / 8$
12н	0	1	0	0	1	0	$V_{18}{ }^{\prime}$	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 6 / 8$
13H	0	1	0	0	1	1	$\mathrm{V}_{19}{ }^{\prime}$	$V_{3}+\left(V_{2}-V_{3}\right) \times 5 / 8$
14 H	0	1	0	1	0	0	$\mathrm{V}_{20}{ }^{\prime}$	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 4 / 8$
15 H	0	1	0	1	0	1	$\mathrm{V}_{21}{ }^{\prime}$	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 3 / 8$
16н	0	1	0	1	1	0	$\mathrm{V}_{22}{ }^{\prime}$	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 2 / 8$
17H	0	1	0	1	1	1	$\mathrm{V}_{23}{ }^{\prime}$	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 1 / 8$
18H	0	1	,	0	0	0	$\mathrm{V}_{24}{ }^{\prime}$	V_{3}
19 H	0	1	1	0	0	1	$\mathrm{V}_{25}{ }^{\prime}$	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 7 / 8$
$1 \mathrm{AH}^{\text {¢ }}$	0	1	1	0	1	0	$\mathrm{V}_{26}{ }^{\prime}$	$V_{4}+\left(V_{3}-V_{4}\right) \times 6 / 8$
1 BH	0	1	1	0	1	1	$\mathrm{V}_{27}{ }^{\prime}$	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 5 / 8$
1 CH	0	1	1	1	0	0	$\mathrm{V}_{28}{ }^{\prime}$	$\mathrm{V}_{4}+\left(V_{3}-V_{4}\right) \times 4 / 8$
1D	0	1	1	1	0	1	$\mathrm{V}_{29}{ }^{\prime}$	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 3 / 8$
1Ен	0	1	1	1	1	0	$\mathrm{V}_{30}{ }^{\prime}$	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 2 / 8$
1FH	0	1	1	1	1	1	$V_{31}{ }^{\prime}$	$\mathrm{V}_{4}+\left(V_{3}-V_{4}\right) \times 1 / 8$
20н	1	0	0	0	0	0	$\mathrm{V}_{32}{ }^{\prime}$	V_{4}
21H	1	0	0	0	0	1	$V_{33}{ }^{\prime}$	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 7 / 8$
22H	1	0	0	0	1	0	$V_{34}{ }^{\prime}$	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 6 / 8$
23н	1	0	0	0	1	1	$\mathrm{V}_{35}{ }^{\prime}$	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 5 / 8$
24H	1	0	0	1	0	0	$V_{36}{ }^{\prime}$	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 4 / 8$
25	1	0	0	1	0	1	$V_{37}{ }^{\prime}$	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 3 / 8$
26	1	0	0	1	1	0	$\mathrm{V}_{38}{ }^{\prime}$	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 2 / 8$
27 ${ }^{\text {}}$	1	0	0	1	1	1	$\mathrm{V}_{39}{ }^{\prime}$	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 1 / 8$
28H	1	0	1	0	0	0	$\mathrm{V}_{40}{ }^{\text {a }}$	V_{5}
29н	1	0	1	0	0	1	$\mathrm{V}_{41}{ }^{\prime}$	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 7 / 8$
2 Ан $^{\text {¢ }}$	1	0	1	0	1	0	$V_{42}{ }^{\prime}$	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 6 / 8$
2 BH	1	0	1	0	1	1	$V_{43}{ }^{\prime}$	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 5 / 8$
2 CH	1	0	1	1	0	0	$V_{44}{ }^{\prime}$	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 4 / 8$
2Dh	1	0	1	1	0	1	$V_{45}{ }^{\prime}$	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 3 / 8$
2Ен	1	0	1	1	1	0	$V_{46}{ }^{\prime}$	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 2 / 8$
2 FH	1	0	1	1	1	1	$V_{47}{ }^{\prime}$	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 1 / 8$
30 H	1	1	0	0	0	0	$\mathrm{V}_{48}{ }^{\prime}$	V_{6}
31\%	1	1	0	0	0	1	$V_{49}{ }^{\prime}$	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 7 / 8$
32н	1	1	0	0	1	0	V_{50},	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 6 / 8$
33-	1	1	0	0	1	1	$V_{51}{ }^{\prime}$	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 5 / 8$
34-	1	1	0	1	0	0	$V_{52}{ }^{\prime}$	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 4 / 8$
35	1	1	0	1	0	1	$V_{53}{ }^{\prime}$	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 3 / 8$
36	1	1	0	1	1	0	$V_{54}{ }^{\prime}$	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 2 / 8$
37 H	1	1	0	1	1	1	$V_{55}{ }^{\prime}$	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 1 / 8$
38H	1	1	1	0	0	0	$\mathrm{V}_{56}{ }^{\prime}$	V_{7}
39н	1	1	1	0	0	1	$V_{57}{ }^{\prime}$	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 7 / 8$
ЗАн	1	1	1	0	1	0	$V_{58}{ }^{\prime}$	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 6 / 8$
3Вн	1	1	1	0	1	1	$V_{59}{ }^{\prime}$	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 5 / 8$
$3 \mathrm{C}_{\mathrm{H}}$	1	1	1	1	0	0	V60'	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 4 / 8$
3Dh	1	1	1	1	0	1	$V_{61}{ }^{\prime}$	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 3 / 8$
ЗЕн	1	1	1	1	1	0	$V_{62}{ }^{\prime}$	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 2 / 8$
3FH	1	1	1	1	1	1	$V_{63}{ }^{\prime}$	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 1 / 8$

Caution V_{8} and V_{9} are not interconnected inside the IC.
(Relationship Between Input Data and Output Voltage: $\mathrm{V}_{8}>\mathrm{V}_{9}>\mathrm{V}_{10}>\mathrm{V}_{11}>\mathrm{V}_{12}>\mathrm{V}_{13}>\mathrm{V}_{14}>\mathrm{V}_{15}>\mathrm{V}_{16}>\mathrm{V}_{17}>$ Vss2)

Figure 2-2

Caution V_{8} and V_{9} are not interconnected inside the IC.

LADDER RESISTANCE VALUES (ro to r62): REFERENCE VALUE

8. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN

Data format: 6 bits \times RGBs (3 dots)

Input width : 18 bits (1-pixel data)
(1) $\mathrm{R} / \overline{\mathrm{L}}=\mathrm{H}$ (Right shift)

Output	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	\ldots	$\mathrm{~S}_{299 / 308}$	$\mathrm{~S}_{300 / 309}$
Data	D_{00} to D_{05}	D_{10} to D_{15}	D_{20} to D_{25}	D_{00} to D_{05}	\ldots	D_{10} to D_{15}	D_{20} to D_{25}

(2) $\mathrm{R} / \mathrm{L}^{-}=\mathrm{L}$ (Left shift)

Output	S_{1}	S_{2}	S_{3}	S_{4}	\ldots	$S_{299 / 308}$	$S_{300 / 309}$
Data	D_{00} to D_{05}	D_{10} to D_{15}	D_{20} to D_{25}	D_{00} to D_{05}	\ldots	D_{10} to D_{15}	D_{20} to D_{25}

POL	$\mathrm{S}_{2 n-1}$	$\mathrm{~S}_{2 n}$
L	$\mathrm{~V}_{9}$ to V_{17}	$\mathrm{~V}_{0}$ to V_{8}
H	V_{0} to V_{8}	$\mathrm{~V}_{9}$ to V_{17}

$S_{2 n-1}$ (Odd output), $\mathrm{S}_{2 n}$ (Even output) $\mathrm{n}=1,2, \cdots \cdot, 155$ (excluding S_{310})

9. RELATIONSHIP BETWEEN STB, POL, AND OUTPUT WAVEFORM

The output voltage is written to the LCD panel synchronized with the STB falling edge.

10. NOTES ON FRAME INVERSION

The μ PD16710 is an IC for dot inversion and inverts dots by alternately using a charging output buffer and a discharging output buffer. Therefore, the output voltage of the first line may not be correctly written because the last line's output polarity of frame $n(n+1)$ and the first line's output polarity are the same (refer to Figure 3).

Consequently, polarity inversion and write operation must be performed between frames (vertical blanking period) in order to invert (clear) the polarity of the wiring level of the liquid crystal panel by using the last line output of the previous frame (refer to Figure 4).

Figure 3

Figure 4

11. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\left.\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Vs} 1=\mathrm{Vss2}=0 \mathrm{~V}\right)$

Parameter	Symbol	Rating	Unit
Logic Part Supply Voltage	$\mathrm{V}_{\mathrm{DD} 1}$	-0.5 to +5.0	V
Driver Part Supply Voltage	$\mathrm{V}_{\mathrm{DD} 2}$	-0.5 to +15.0	V
Logic Part Input Voltage	$\mathrm{V}_{\mathrm{I} 1}$	-0.5 to $\mathrm{V}_{\mathrm{DD} 1}+0.5$	V
Driver Part Input Voltage	$\mathrm{V}_{\mathrm{I} 2}$	-0.5 to $\mathrm{V}_{\mathrm{DD} 2}+0.5$	V
Logic Part Output Voltage	$\mathrm{V}_{\mathrm{O} 1}$	-0.5 to $\mathrm{V}_{\mathrm{DD} 1}+0.5$	V
Driver Part Output Voltage	$\mathrm{V}_{\mathrm{o} 2}$	-0.5 to $\mathrm{V}_{\mathrm{DD} 2}+0.5$	V
Operating Temperature Range	T_{A}	-10 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Recommended Operating Range ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{Vss} 1=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Logic Part Supply Voltage	$\mathrm{V}_{\mathrm{DD} 1}$	3.0	3.3	3.6	V
Driver Part Supply Voltage	$\mathrm{V}_{\mathrm{DD} 2}$	9.0		12.5	V
High-Level Input Voltage	V_{IH}	$0.7 \mathrm{~V}_{\mathrm{DD} 1}$		$\mathrm{~V}_{\mathrm{DD} 1}$	V
Low-Level Input Voltage	V_{IL}	0		$0.3 \mathrm{~V}_{\mathrm{DD} 1}$	V
γ-Corrected Supply Voltage	V_{D} to V_{17}	$\mathrm{~V}_{\mathrm{SS} 2}+0.1$		$\mathrm{~V}_{\mathrm{DD} 2}-0.1$	V
Driver Part Output Voltage	V_{O}	$\mathrm{V}_{\mathrm{SS} 2}+0.1$		$\mathrm{~V}_{\mathrm{DD} 2}-0.1$	V
Maximum Clock Frequency	$\mathrm{f}_{\text {max. }}$	45			MHz

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=9.0 \mathrm{~V}$ to $12.5 \mathrm{~V}, \mathrm{Vss}^{2}=\mathrm{Vss} 2=0 \mathrm{~V}$)

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Input Leakage Current	IL					± 1.0	$\mu \mathrm{A}$
High-Level Output Voltage	Vон	STHR (STHL), l он $=0 \mathrm{~mA}$		$V_{D D 1}-0.1$			V
Low-level Output Voltage	VoL	STHR (STHL), loL $=0 \mathrm{~mA}$				0.1	V
γ-Corrected Static Current Consumption	I_{γ}	V_{0} to $\mathrm{V}_{8}=\mathrm{V}_{9}$ to $\mathrm{V}_{17}=4.0 \mathrm{~V}$	$\mathrm{V}_{0}, \mathrm{~V}_{9}$	131	262	524	$\mu \mathrm{A}$
			V_{8}, V_{17}	-131	-262	-524	$\mu \mathrm{A}$
Driver Output Current	Ivor	$\mathrm{Vx}=8.0 \mathrm{~V}$, Vout $=7.5 \mathrm{~V}$			-0.59	-0.1	mA
	Ivol	$\mathrm{V} x=1.0 \mathrm{~V}$, Vout $=1.5 \mathrm{~V}$		0.1	0.34		mA

Vx refers to the output voltage of analog output pins S_{1} to $S_{300 / 309}$.
Vout refers to the voltage applied to analog output pins S_{1} to $S_{300 / 309}$.

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=9.0 \mathrm{~V}$ to $12.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss} 1}=\mathrm{Vss} 2=0 \mathrm{~V}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Output Voltage Deviation	$\Delta \mathrm{V}$ 。	All input data		± 5	± 20	mV
Average Output Voltage Deviation	$\Delta \mathrm{V}_{\mathrm{AV}}$	All input data		± 10		mV
Driver Output Voltage Range	Vo	All input data	0.1		VDD2 - 0.1	V
Logic Part Dynamic Current Consumption	ldo1	VDD1; with no load		3.0	8.0	mA
Driver Part Dynamic Current Consumption	$1 \mathrm{DD21}$	$\mathrm{V}_{\mathrm{DD} 2}=9.5 \mathrm{~V}, \mathrm{LPC}=\mathrm{L}$, with no load		5.0	12.0	mA
Driver Part Dynamic Current Consumption	1 ld 22	$\mathrm{V}_{\mathrm{DD} 2}=12.0 \mathrm{~V}, \mathrm{LPC}=\mathrm{L}$, with no load		7.5	17.0	mA

Remarks 1. The output voltage deviation refers to the voltage difference between adjoining output pins when the display data is the same (within the chip).
2. The average output voltage deviation refers to the average output voltage difference between chips. The average output voltage refers to the average voltage between chips when the display data is the same. The average output voltage deviation is a reference value.
3. The STB cycle is defined to be $15 \mu \mathrm{~s}$ at fcLk $=32.5 \mathrm{MHz}$.

The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured values in the dot checkerboard input pattern.
4. Refers to the current consumption per driver when cascades are connected under the assumption of SVGA single-sided mounting (10 units).
When LPC = H level, the static current consumption can be reduced by 50%.
Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=9.0 \mathrm{~V}$ to $12.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Start Pulse Delay Time	tpLH1	$\mathrm{CL}=15 \mathrm{pF}$		11	17	ns
Driver Output Delay Time	tPLH2	$\begin{aligned} & \mathrm{RL}=2.5 \mathrm{k} \Omega \times 4 \\ & \mathrm{CL}=16 \mathrm{pF} \times 5 \end{aligned}$		2.0	10	$\mu \mathrm{s}$
	tPLH3			3.1	15	$\mu \mathrm{s}$
	tPHL2			2.0	10	$\mu \mathrm{s}$
	tphl3			4.3	15	$\mu \mathrm{S}$
Input Capacitance 1	Cl_{11}	STHR (STHL) excluded, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.5	15	pF
Input Capacitance 2	Cl_{12}	$\begin{aligned} & \text { STHR (STHL), } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		5.6	15	pF

<Test condition>

$R \mathrm{~L}=2.5 \mathrm{k} \Omega$
$C L=16 \mathrm{pF}$

Conditions Required for Timing

$\left(\mathrm{T}_{\mathrm{A}}=-10\right.$ to $\left.+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{Vss} 1=\mathrm{Vss} 2=0 \mathrm{~V}, \mathrm{tr}=\mathrm{tf}_{\mathrm{f}}=4.0 \mathrm{~ns}\right)$

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock Pulse Width	PWclk		22			ns
Clock Pulse High Period	PWcık(H)		6			ns
Clock Pulse Low Period	PWCLK(L)		6			ns
Data Setup Time	tsetup 1		6			ns
Data Hold Time	thold 1		6			ns
Start Pulse Setup Time	tsetup2		4			ns
Start Pulse Hold Time	thold2		6			ns
POL2 Setup Time	tsetup3		6			ns
POL2 Hold Time	thold3		6			ns
Start Pulse Low Period	tspL		6			ns
STB Pulse Width	PWstв		1			$\mu \mathrm{s}$
Data Invalid Period	tinv		1			CLK
Last Data Timing	tıot		2			CLK
CLK-STB Time	tcles-stb	CLK $\uparrow \rightarrow$ STB \downarrow	6			ns
STB-CLK Time	tstb-clk	STB $\downarrow \rightarrow$ CLK \uparrow	6			ns
Time Between STB and Start Pulse	tstв-stн	STB $\downarrow \rightarrow$ STHR (STHL) \uparrow	60			ns
POL-STB Time	tpol-stb	POL \uparrow or $\downarrow \rightarrow$ STB \uparrow	-5			ns
STB-POL Time	tstb-pol	STB $\downarrow \rightarrow$ POL \downarrow or \uparrow	6			ns

13. RECOMMENDED MOUNTING CONDITIONS

When mounting this product, please make sure that the following recommended conditions are satisfied.
For packaging methods and conditions other than those recommended below, please contact NEC sales personnel.

Mounting Condition	Mounting Method	Condition
Thermocompression bonding	Soldering	Heating tool 300 to $350^{\circ} \mathrm{C}$; heating for 2 to 3 seconds; pressure 100 g (per solder)
	ACF $^{\text {Note }}$ (Sheet-shape bonding agent)	Temporary bonding 70 to $100^{\circ} \mathrm{C}$; pressure 3 to $8 \mathrm{~kg} / \mathrm{cm}^{2}$; time 3 to 5 secs. Real bonding 165 to $180^{\circ} \mathrm{C}$; pressure 25 to $45 \mathrm{~kg} / \mathrm{cm}^{2}$; time 30 to 40 secs. (when using the anisotropic conductive film SUMIZAC1003 of Sumitomo Bakelite, Ltd.)

Note To find out the detailed conditions for packaging the ACF part, please contact the ACF manufacturing company.

Caution Be sure to avoid using two or more packaging methods at a time.

REFERENCE

NEC Semiconductor Device Reliability/Quality Control System (C10983E)
Quality Grades on NEC Semiconductor Devices (C11531E)
[MEMO]
[MEMO]
[MEMO]

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

