1/16, 1/32 DUTY LCD CONTROLLER/DRIVER WITH RAM

DESCRIPTION

μ PD16676 is a controller/driver containing RAMs capable of full-dot LCD displays. One of these IC chips can drive the full-dot LCD up to 61-by-16 dots.
These ICs are the most suitable for Kanji character or Chinese character pagers, as well as graphic pagers, displaying 16-by-16 dots per character.

FEATURES

- LCD driver with built-in display RAM
- Dot display RAM: 2560 bits
- Output: 61 segments \& 16 commons
- 8-bit parallel interface
- Oscillation circuit incorporated
^ ORDERING INFORMATION

Part Number	Package
μ PD16676P	Chips
μ PD16676W	Wafer

Remark Purchasing the above products in terms of chips per wafer requires an exchange of other documents as well, including a memorandum of the product quality. Therefore, those who are interested in this regard are advised to contact one of our sales representatives for further details.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

^ 1. BLOCK DIAGRAM

Remark /xxx indicates active low signals.

^ 2. PIN CONFIGURATION (PAD LAYOUT)

Chip Size	$: 4.04 \times 5.53 \mathrm{~mm}^{2}$
Pad Size Al Area	$: 120 \times 120 \mu \mathrm{~m}^{2}$
Pad Size Open Area	$: 108 \times 108 \mu \mathrm{~m}^{2}$

Table2-1. Pad Connection

Pin No.	Pin Symbol	I/O	Pin No.	Pin Symbol	1/0
1	COM5	Output	51	SEG21	Output
2	COM_{6}	Output	52	SEG20	Output
3	COM_{7}	Output	53	SEG19	Output
4	COM_{8}	Output	54	SEG18	Output
5	COM9	Output	55	SEG17	Output
6	COM ${ }_{10}$	Output	56	SEG16	Output
7	COM11	Output	57	SEG15	Output
8	COM_{12}	Output	58	SEG14	Output
9	COM_{13}	Output	59	SEG13	Output
10	COM_{14}	Output	60	SEG12	Output
11	COM 15	Output	61	SEG11	Output
12	SEG60	Output	62	SEG10	Output
13	SEG59	Output	63	SEG9	Output
14	SEG58	Output	64	SEG8	Output
15	SEG57	Output	65	SEG7	Output
16	SEG56	Output	66	SEG6	Output
17	SEG55	Output	67	SEG5	Output
18	SEG54	Output	68	SEG4	Output
19	SEG53	Output	69	SEG3	Output
20	SEG52	Output	70	SEG2	Output
21	SEG51	Output	71	SEG1	Output
22	SEG50	Output	72	SEG0	Output
23	SEG49	Output	73	A0	Input
24	SEG48	Output	74	OSC ${ }_{1}$	Input
25	SEG47	Output	75	OSC2	Output
26	SEG46	Output	76	E(/RD)	Input
27	SEG45	Output	77	R,/W(/WR)	Input
28	SEG44	Output	78	Vss	-
29	SEG43	Output	79	DB0	Input/Output
30	SEG42	Output	80	DB1	Input/Output
31	SEG41	Output	81	DB2	Input/Output
32	SEG40	Output	82	DB_{3}	Input/Output
33	SEG39	Output	83	DB4	Input/Output
34	SEG38	Output	84	DB5	Input/Output
35	SEG37	Output	85	DB6	Input/Output
36	SEG36	Output	86	DB7	Input/Output
37	SEG35	Output	87	Vod	-
38	SEG34	Output	88	/RESET	Input
39	SEG33	Output	89	FR	Input/Output
40	SEG32	Output	90	VLC5	-
41	SEG31	Output	91	VLC3	-
42	SEG30	Output	92	VLC2	-
43	SEG29	Output	93	M,/S	Input
44	SEG28	Output	94	VLC4	-
45	SEG27	Output	95	VLC1	-
46	SEG26	Output	96	COM0	Output
47	SEG25	Output	97	COM_{1}	Output
48	SEG24	Output	98	COM_{2}	Output
49	SEG23	Output	99	COM_{3}	Output
50	SEG22	Output	100	COM_{4}	Output

Table2-2. Pad Layout

Pin No.	$\mathrm{X}(\mu \mathrm{m})$	$Y(\mu \mathrm{~m})$
1	1771	-2230
2	1771	-2076
3	1771	-1922
4	1771	-1768
5	1771	-1614
6	1771	-1460
7	1771	-1306
8	1771	-1152
9	1771	-998
10	1771	-844
11	1771	-690
12	1771	-536
13	1771	-382
14	1771	-228
15	1771	-74
16	1771	80
17	1771	234
18	1771	388
19	1771	542
20	1771	696
21	1771	850
22	1771	1004
23	1771	1158
24	1771	1312
25	1771	1466
26	1771	1620
27	1771	1774
28	1771	1928
29	1771	2082
30	1771	2236
31	1418.8	2517.2
32	1268.8	2517.2
33	1118.8	2517.2
34	968.8	2517.2
35	818.8	2517.2

Pin No.	$\mathrm{X}(\mu \mathrm{m})$	$\mathrm{Y}(\mu \mathrm{m})$
36	668.8	2517.2
37	518.8	2517.2
38	368.8	2517.2
39	218.8	2517.2
40	68.8	2517.2
41	-81.2	2517.2
42	-231.2	2517.2
43	-381.2	2517.2
44	-531.2	2517.2
45	-681.2	2517.2
46	-831.2	2517.2
47	-981.2	2517.2
48	-1131.2	2517.2
49	-1281.2	2517.2
50	-1431.2	2517.2
51	-1771	2242.8
52	-1771	2092.8
53	-1771	1942.8
54	-1771	1792.8
55	-1771	1642.8
56	-1771	1492.8
57	-1771	1342.8
58	-1771	1192.8
59	-1771	1042.8
60	-1771	892.8
61	-1771	742.8
62	-1771	592.8
63	-1771	442.8
64	-1771	292.8
65	-1771	142.8
66	-1771	-7.2
67	-1771	-157.2
68	-1771	-307.2
69	-1771	-457.2
70	-1771	-607.2

Pin No.	$\mathrm{X}(\mu \mathrm{m})$	$\mathrm{Y}(\mu \mathrm{m})$
71	-1771	-757.2
72	-1771	-907.2
73	-1767.8	-1149.4
74	-1767.8	-1299.4
75	-1767.8	-1489.4
76	-1767.8	-1639.4
77	-1767.8	-1839.4
78	-1767.8	-1989.4
79	-1767.8	-2139.4
80	-1767.8	-2289.4
81	-1745	-2513.4
82	-1595	-2513.4
83	-1395	-2513.4
84	-1245	-2513.4
85	-1045	-2513.4
86	-895	-2513.4
87	-682.6	-2513.4
88	-532.2	-2513.4
89	-382.2	-2513.4
90	-106.6	-2513.4
91	69.8	-2513.4
92	219.8	-2513.4
93	369.8	-2513.4
94	569.8	-2513.4
95	719.8	-2513.4
96	952.4	-2513.4
97	1102.4	-2513.4
98	1252.4	-2513.4
99	1402.4	-2513.4
100	1552.4	-2513.4

5. PIN FUNCTIONS

5.1 Power System

Pin Symbol	Pin Name	Pin No.	I/O	Description
V ${ }_{\text {d }}$	Power supply pin	87	-	Power supply
Vss	Ground	78	-	Ground
VLC1 to VLC5	Reference power supply for drivers	$\begin{aligned} & 90,91,92,94, \\ & 95 \end{aligned}$	-	Reference power supply for LCD driving

5.2 Logic system

Pin Symbol	Pin Name	Pin No.	1/O	Description
M,/S	Master/Slave selection	93	Input	Switches between the master chip and the slave chip.
FR	LCD to AC signal	89	Input/ Output	Exchanges synchronizing signals (LCD-to-AC signals) in connecting cascades. This pin is for output if the chip is the master, and for input if the chip is the slave.
DB_{0} to DB_{7}	Data Bus	79 to 86	Input/ Output	Data inputs/outputs
A0	Data/Instruction Switching	73	Input	This pin is used for switching between the display data and the instruction. High level : Display data Low level : Instruction
/RESET	Reset and 68/80-series switching	88	Input	This pin performs reset at the edge of the low-level pulse. At that level, it performs switching $68 / 80$ series modes. High level : 68 series CPU interface Low level : 80 series CPU interface
E(/RD)	Enable and read enable	76	Input	68 series mode : Enable signal 80 series mode : Read enable signal
R,/W(/WR)	Read/Write and Write enable	77	Input	68 series mode : Read/Write signal 80 series mode : Write enable signal
OSC_{1}	Oscillation pin	74	Input	Oscillation (connected with a register between OSC_{2})
OSC_{2}	Oscillation pin	75	Output	Oscillation (connected with a register between OSC_{1})

5.3 Driver System

Pin Symbol	Pin Name	Pin No.	I/O	Description
SEG ${ }_{0}$ to SEG $_{60}$	Segment	72 to 12	Output	Segment output pins
COM 0 to COM $_{15}$	Common	96 to 100, 1 to 11	Output	Common output pins If the chip is a slave, these pins correspond to COM16 to COM $_{31}$.

4. COMMANDS

	Command	/RD	/WR	A0	DB7	DB6	DB5	DB_{4}	DB3	DB2	DB1	DB0	Function
1	Display ON/OFF	1	0	0	1	0	1	0	1	1	1	0/1	ON/OFF of the whole display is performed independent of the display RAM's data or internal state. 1: ON, 0: OFF (Power save at static drive ON) ${ }^{\text {Note }}$
2	Display start line	1	0	0	1	1	0	Display start address (0 to 31)					Determines the RAM line displayed on the uppermost line (COM) of the display.
3	Page address set	1	0	0	1	0	1	1	1	0			Sets display RAM pages in the page address register.
4	Column(segment) address set	1	0	0	0	Column addresses (0 to 79)							Sets display RAM's column address in the column address register.
5	Status read	0	1	0	$\begin{aligned} & \mathrm{B} \\ & \mathrm{U} \\ & \mathrm{~S} \\ & \mathrm{Y} \end{aligned}$	A D C	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \\ & \text { / } \\ & \mathrm{O} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{E} \\ & \mathrm{~S} \\ & \mathrm{E} \\ & \mathrm{~T} \end{aligned}$	0	0	0	0	Reads status BUSY 1: During internal operation 0 : READY status ADC 1: Clockwise output(Normal rotation) 0: Counterclockwise output (Reverse) ON/OFF 1: Display OFF, 0: Display ON RESET 1: Being reset, 0: Normal
6	Display data write	1	0	1	Write Data								Displays the data bus data and writes it onto the Accesses the display RAM of a display RAM. pre-specified address. After
7	Display data read	0	1	1	Read data								Reads the data in the display RAM onto the data bus. access, the column address is incremented.
8	ADC select	1	0	0	1	0	1	0	0	0	0	0/1	This command is used to reverse the correspondence relationship between display RAM's column addresses and segment driver outputs. 0: Clockwise output (Normal rotation) 1: Counterclockwise output (Reverse)
9	Static drive ON/OFF	1	0	0	1	0	1	0	0	1	0	0/1	Selects between the normal display operation and the static all-lamp-driven display. $\begin{aligned} & \text { 1: Static drive (Power save) } \\ & \text { 0: Normal display operation } \\ & \hline \end{aligned}$
10	Duty select	1	0	0	1	0	1	0	1	0	0	0/1	Selects between two different liquidcrystal cell driving duties. 1: $1 / 32$ duty 0: 1/16 duty
11	Read modify write	1	0	0	1	1	1	0	0	0	0	0	Increments the column address counter only when writing the display data; but not when reading it.
12	END	1	0	0	1	1	1	0	1	1	1	0	Cancels read modify write mode
13	Reset	1	0	0	1	1	1	0	0	0	1	0	Sets the display start line register to the first line. Sets the column address counter and the page address register to 0 .

Note If the static drive is turned ON in the display OFF state, the machine is placed in the power save state.

5. DISPLAY RAM MAP

6．Line Address Circuit

As is shown in Figure 6－1，the line address circuit specifies the line address that corresponds to a COM output for displaying the contents of display data RAM．The display start line address set command specifies line address of to the COMo output．
The screen can be scrolled by dynamically changing the line address via the display start line address set command．

Figure 6－1．Specification of Display Start Line Address in Display Data RAM

I	$\frac{\mathrm{I}}{\mathbf{O}}$	$\begin{aligned} & \hline \text { I } \\ & \hline \end{aligned}$	$$	$\begin{aligned} & \text { I } \\ & \hline \text { O} \end{aligned}$	$$	$\stackrel{7}{9}$	$\begin{aligned} & \text { I } \\ & \hline \mathbf{D} \\ & \hline \end{aligned}$	$\stackrel{\text { T }}{\substack{\text { ¢ }}}$	T	$\stackrel{\text { I }}{\text { c }}$		¢	丕	T	T
$\begin{aligned} & \text { I } \\ & \hline \underset{\square}{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \frac{T}{\Psi} \\ & \hline \end{aligned}$	－	$\begin{aligned} & \mathrm{T} \\ & \hline \mathrm{O} \\ & \hline \end{aligned}$	$\xrightarrow{\text { T }}$	$\frac{T}{4}$	$\begin{aligned} & \text { I } \\ & \text { İ } \end{aligned}$		「	¢	$\stackrel{\text { T }}{\text { ¢ }}$	$\stackrel{\text { T }}{ }$	$\stackrel{\square}{\square}$	$\stackrel{T}{\square}$	甬	$\stackrel{\text { T }}{\sim}$
$\begin{aligned} & \text { ® } \\ & \text { 心 } \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{(} \\ & 山 己 心 \\ & \omega \end{aligned}$	$\begin{gathered} \text { §゙ } \\ \text { 心 } \end{gathered}$	$\begin{aligned} & \text { © } \\ & \text { 心 } \end{aligned}$	$\begin{aligned} & \text { ভ゙ } \\ & \text { 心 } \end{aligned}$	$\begin{aligned} & \text { O゙ } \\ & \text { ひ } \end{aligned}$	$\begin{aligned} & \text { ®0 } \\ & \text { © } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { W } \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \text { O } \\ & \text { W } \end{aligned}$		兑	$\begin{aligned} & \text { ơ } \\ & \text { O } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \stackrel{~}{0} \\ & \text { U } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { W } \\ & \text { W } \end{aligned}$	䔍	－

Remark COM_{16} to COM_{31} are valid in only $1 / 32$ duty．

7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, V ss $=0 \mathrm{~V}$)

Parameter	Symbol	Rating	Unit
Supply voltage	Vod	-0.3 to +6.5	V
Driver reference supply input voltage	VLC1 to VLC4	$V_{D D}-13$ to $V_{D D}+0.3$	V
	VLC5	$V_{D D}-13$ to +0.3	V
Logic system input voltage	Vin1	-0.3 to $V_{\text {DD }}+0.3$	V
Logic system output voltage	Vout1	-0.3 to $V_{\text {DD }}+0.3$	V
Logic system input/output voltage	V//01	-0.3 to VDD +0.3	V
Driver system output voltage	Vout2	VLC5-0.3 to VdD + 0.3	V
Operating ambient temperature	TA	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Cautions1. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
2. Ensure that the phase relationship is $V_{\text {DD }} \geq V_{\text {LC } 1} \geq V_{L C} \geq V_{L C} \geq V_{L C} \geq V_{L C 5}$.

* Recommended Operating Range ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	Vod	2.7		5.5	V
Reference supply voltage	VLC1 to V ${ }_{\text {LC4 }}$	VDD-12		VDD	V
	VLC5	VDD-12		0	V
Logic system input voltage	VIN1	0		VDD	V

Electrical Characteristics (Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{VDD}=2.7$ to 5.5 V)

	Parameter	Symbol	Condition	MIN.	TYP. ${ }^{\text {Note }}$	MAX.	Unit
	High-level input voltage	V_{1+1}	AO, DBo to DB7, E, R,/W	0.8 VDD			V
		$\mathrm{V}_{\mathrm{H} 2}$	FR, M,/S, /RESET	0.8 VDD			V
	Low-level input voltage	VIL1	A0, DB_{0} to $\mathrm{DB}_{7}, \mathrm{E}, \mathrm{R}, \mathrm{W}$			0.2 VDD	V
		VIL2	FR, M,/S, /RESET			0.2 VDD	V
	High-level input current	IH	A0, E, R,/W, /RESET			1	$\mu \mathrm{A}$
	Low-level input current	IL	A0, E, R,/W, /RESET			-1	$\mu \mathrm{A}$
	High-level output voltage	Vor1	$\begin{aligned} & \text { lout }=-3 \mathrm{~mA}, \mathrm{DB}_{0} \text { to } \mathrm{DB} 7, \\ & \mathrm{~V} \text { DD }=4.5 \text { to } 5.5 \mathrm{~V} \end{aligned}$	0.8 VDD			V
		Vон2	lout $=-2 \mathrm{~mA}, \mathrm{FR}, \mathrm{V}$ DD $=4.5$ to 5.5 V	0.8 VDD			v
		Vон3	$\begin{aligned} & \text { lout }=-120 \mu \mathrm{~A}, \mathrm{OSC}_{2}, \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \text { to } 5.5 \mathrm{~V} \end{aligned}$	0.8 VDD			V
	Low-level output voltage	VoL1	$\begin{aligned} \text { lout }=3 \mathrm{~mA}, \mathrm{DB} \text { o to } \mathrm{DB} 7, \\ \mathrm{~V}_{\mathrm{DD}}=4.5 \text { to } 5.5 \mathrm{~V} \\ \hline \end{aligned}$			0.2 Vdo	V
		VoL2	lout $=2 \mathrm{~mA}, \mathrm{FR}, \mathrm{V}$ DD $=4.5$ to 5.5 V			0.2 VDD	V
		Voı3	$\begin{aligned} & \text { lout }=120 \mu \mathrm{~A}, \mathrm{OSC}_{2}, \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \text { to } 5.5 \mathrm{~V} \end{aligned}$			0.2 Vdo	V
	High-level output voltage	Vон1	$\begin{aligned} & \text { lout }=-1.5 \mathrm{~mA}, \mathrm{DB}_{0} \text { to } \mathrm{DB}_{7}, \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \text { to } 4.5 \mathrm{~V} \end{aligned}$	0.8 VDD			V
		Vон2	lout $=-1 \mathrm{~mA}, \mathrm{FR}, \mathrm{V} \mathrm{DD}=2.7$ to 4.5 V	0.8 VDD			V
		Vонз	$\begin{aligned} & \text { lout }=-80 \mu \mathrm{~A}, \mathrm{OSC}_{2}, \\ & \mathrm{VDD}=2.7 \text { to } 4.5 \mathrm{~V} \end{aligned}$	0.8 VDD			V
	Low-level output voltage	VoL1	$\begin{aligned} & \text { lout }=1.5 \mathrm{~mA}, \mathrm{DB}_{0} \text { to } \mathrm{DB}_{7}, \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \text { to } 4.5 \mathrm{~V} \\ & \hline \end{aligned}$			0.2 VDD	V
		Vol2	lout $=1 \mathrm{~mA}, \mathrm{FR}, \mathrm{V} \mathrm{DD}=2.7$ to 4.5 V			0.2 VDD	V
		Voı3	$\begin{aligned} & \text { lout }=80 \mu \mathrm{~A}, \mathrm{OSC}_{2}, \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \text { to } 4.5 \mathrm{~V} \end{aligned}$			0.2 VdD	V
	High-level leak current	ILoн	DB_{0} to DB_{7}, $\mathrm{V}_{\text {INout }}=\mathrm{V}_{\mathrm{DD}}$			3	$\mu \mathrm{A}$
	Low-level leak current	ILoL	DB_{0} to DB_{7}, $\mathrm{V}^{\text {In }}$ out $=\mathrm{V}_{\text {ss }}$			-3	$\mu \mathrm{A}$
	Driver output ON resistor	Ron1	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}$ dD $=5 \mathrm{~V}, \mathrm{~V}_{\text {LC5 }}=\mathrm{Vss}$			7.5	$\mathrm{k} \Omega$
		Ron2	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}$ DD $=3.5 \mathrm{~V}, \mathrm{~V}_{\text {LC5 }}=\mathrm{V}$ Ss			50	$\mathrm{k} \Omega$
	Static current consumption	IdDo				1.0	$\mu \mathrm{A}$
	Dynamic current consumption	IDD1	External clock: 18 kHz			15.0	$\mu \mathrm{A}$
			Self-oscillation: $\mathrm{R}=1.3 \mathrm{M} \Omega$			30.0	$\mu \mathrm{A}$
		IDD2	During access: $\mathrm{tcyc}=200 \mathrm{kHz}$			500	$\mu \mathrm{A}$
	Input capacitance	Cin	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$			8.0	pF
Oscillator frequency		fosc1	In self-oscillation, $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, $\mathrm{R}=1.3 \mathrm{M} \Omega \pm 2 \%$	15	18	21	kHz
		fosc2	In self-oscillation, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, $\mathrm{R}=1.3 \mathrm{M} \Omega \pm 2 \%$	11	16	21	kHz
	Reset time	tR	/RESET $\downarrow \rightarrow$ Internal reset release	1.0		1000	$\mu \mathrm{s}$

Remark The TYP. value is a reference value when $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC Characteristics 1 (Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V)

80 Series CPU Read/Write Timing

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Address hold time	taH8	A0	10			ns
Address setup time	taw8		20			ns
System cycle time	tcycs	/WR, /RD	1000			ns
Control pulse width	tcc		200			ns
Data setup time	tos8	DB_{0} to DB_{7}	80			ns
Data hold time	toh8		10			ns
/RD access time	tacce	DB_{0} to $\mathrm{DB}_{7}, \mathrm{CL}=100 \mathrm{pF}$			90	ns
Output disable time	toн8		10		60	ns

68 Series CPU Read/Write Timing

Parameter		Symbol	Condition	MIN.	TYP.	MAX.	Unit
System cycle time		tcyce	A0, R,/W	1000			ns
Address setup time		taw6		20			ns
Address hold time		tah6		10			ns
Data setup time		tos6	DB_{0} to DB_{7}	80			ns
Data hold time		toh6		10			ns
Output disable time		tон6	DB_{0} to $\mathrm{DB}_{7}, \mathrm{Cl}_{\mathrm{L}}=100 \mathrm{pF}$	10		60	ns
Access time		tacce				90	ns
Enable pulse width	Read	tew	E	100			ns
	Write			80			ns

AC Characteristics 2 (Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 4.5 V)

80 Series CPU Read/Write Timing

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Address hold time	taH8	A0	20			ns
Address setup time	taw8		40			ns
System cycle time	tcycs	/WR, /RD	2000			ns
Control pulse width	tcc		400			ns
Data setup time	tos8	DB_{0} to DB_{7}	160			ns
Data hold time	toh8		20			ns
/RD access time	taccs	DB_{0} to $\mathrm{DB}_{7}, \mathrm{Cl}=100 \mathrm{pF}$			180	ns
Output disable time	toн8		20		120	ns

68 Series CPU Read/Write Timing

Parameter		Symbol	Condition	MIN.	TYP.	MAX.	Unit
System cycle time		tcyce	A0, R,/W	2000			ns
Address setup time		taw 6		40			ns
Address hold time		taH6		20			ns
Data setup time		tbs6	DB_{0} to DB_{7}	160			ns
Data hold time		toh6		20			ns
Output disable time		toн6	DB_{0} to $\mathrm{DB}_{7}, \mathrm{CL}_{2}=100 \mathrm{pF}$	20		120	ns
Access time		tacce				180	ns
Enable pulse width	Read	tew	E	200			ns
	Write			160			ns

Test Point of Switching Characteristics

Waveforms of Switching Characteristics

80 Series CPU Read/Write Timing

68 Series CPU Read/Write Timing

Reset

OSC

OSC

8. EXAMPLE of APPLICATION CIRCUIT

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.
(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

^ Reference Documents

NEC Semiconductor Device Reliability/Quality Control System (C10983E)
Quality Grades to NEC's Semiconductor Devices (C11531E)

- The information in this document is current as of October, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

