40-BIT AC-PDP DRIVER

The μ PD16331 is a column driver for an AC plasma display panel (PDP) using high breakdown voltage CMOS process. It consists of 40 -bit bidirectional shift register, latch circuit and high breakdown voltage CMOS driver blocks. The logic block operates on a 5 V power supply so that it can be connected directly to a microcontroller (CMOS level input). The driver block has high breakdown voltage output of 100 V and $\pm 150 \mathrm{~mA}$ MAX. Both the logic block and driver block are constructed by CMOS, which allows operation with low power consumption.

FEATURES

- High voltage full CMOS process
- High breakdown voltage, high current output ($100 \mathrm{~V}, \pm 150 \mathrm{~mA}$ MAX.)
- 40-bit bidirectional shift register on chip
- Data control by transfer clock (external) and latch
- High speed data transfer capability ($f_{\text {max. }}=16 \mathrm{MHz}$ min.; when cascaded)
- Wide operating temperature range ($\mathrm{T}_{\mathrm{A}}=-20$ to $85^{\circ} \mathrm{C}$)
- Polarity of all driver outputs can be inverted by PC pins.

ORDERING INFORMATION

Part Number	Package
μ PD16331GF-3B9	80-pin plastic QFP (copper lead frame)

BLOCK DIAGRAM

Note High breakdown voltage CMOS driver

PIN CONFIGURATION (Top View)

Be sure to use all of the $V_{D D 1}$, $V_{D D 2}$, $V_{s s 1}$, and $V_{s s 2}$ pins. Use $V_{s s 1}$ and $V_{s s 2}$ at the same potential. The power should be turned on for VDD1, logic input, and VDD2, in that order and should be turned off in the reverse order.

PIN DESCRIPTION

Pin Symbol	Pin Name	Pin No.	Description
PC	Inverted polarity input	27	$\mathrm{PC}=\mathrm{H}$: Polarity of all outputs inverted
BLK	Blanking input	37	$B L K=H: A l l ~ o u t p u t s ~=~ H ~ o r ~ L ~$
$\overline{\text { STB }}$	Latch strobe input	36	L: Through H: Data retained
$\mathrm{A}^{\text {Note }}$	RIGHT data input	30	When R/L $=\mathrm{H}, \mathrm{A}$: Input B: Output
$\mathrm{B}^{\text {Note }}$	LEFT data input	35	When $\mathrm{R} / \mathrm{L}=\mathrm{L}, \mathrm{A}$: Output B: Input
CLK	Clock input	31	Shift executed on rise
CLR	Clear input	32	L: All shift registers set to "L"
R/L	Shift control input	25	H: Right shift mode $\mathrm{A} \rightarrow \mathrm{O}_{1} \ldots \mathrm{O}_{40} \rightarrow \mathrm{~B}$ L: Left shift mode $\mathrm{B} \rightarrow \mathrm{O}_{40} \cdots \mathrm{O}_{1} \rightarrow \mathrm{~A}$
O_{1} to O_{40}	High breakdown voltage output	1 to 20, 45 to 64	$100 \mathrm{~V}, 150 \mathrm{~mA} \mathrm{MAX}$.
VDD1	Logic block power supply	26, 39	$5 \mathrm{~V} \pm 10$ \%
VDD2	Driver block power supply	21, 44, 65, 66, 79, 80	30 to 90 V
Vss1	Logic ground	24, 41,	Connected to system GND
Vss2	Driver ground	22, 23, 42, 43, 67 to 78	Connected to system GND
NC	Non-connection pins	28, 29, 33, 34, 38, 40	Non-connection

Note Data which is input to the shift registers is always inverted input data $A(B)$ and data in the shift registers is always inverted when it is output. (Refer to the truth tables and timing chart.)

TRUTH TABLE 1 (Shift Register Block)

Input		Output		Shift Register
R/L	CLK	A	B	
H	\uparrow	Input	OutputNotes 1	Right shift executed
H	H or L		Output	Retained
L	\uparrow	Output ${ }^{\text {Notes } 2}$	Input	Left shift executed
L	H or L	Output		Retained

Notes 1. The data of internal shift register S_{39} is shifted to S_{40} on a rise of CLK and inverted data of S_{40} is output from B. (Refer to the timing chart.)
2. The data of internal shift register S_{2} is shifted to S_{1} on a rise of CLK and inverted data of S_{1} is output from A. (Refer to the timing chart.)

TRUTH TABLE 2 (Latch Block)

$\overline{\text { STB }}$	Operation
H	Retains data immediately before $\overline{\text { STB }}$ becomes H.
L	Outputs data of shift register.

TRUTH TABLE 3 (Driver Block)

Input				State of Driver Output
A (B)	$\overline{\text { STB }}$	BLK	PC	
\times	\times	H	H	L (all driver outputs: L)
\times	\times	H	L	H (all driver outputs: H)
L	L	L	H	H
L	L	L	L	L
H	L	L	H	L
H	L	L	L	H
\times	H	L	H	Outputs data of S_{n} on $\overline{\text { STB }}$ rise.
\times	H	L	L	Inverts and outputs data of Sn $_{n}$ on STB rise.

\times : H or L, H: High level L: Low level

TIMING CHART

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{ss} 1}=\mathrm{Vss} 2=0 \mathrm{~V}$)

Item	Symbol	Rating	Unit
Logic block supply voltage	VDD1	-0.5 to +7.0	V
Driver block supply voltage	VDD2	-0.5 to +100	V
Logic block input voltage	V_{11}	-0.5 to $V_{\text {DD } 1}+0.5$	V
Logic block output voltage	Vo1	-0.5 to $\mathrm{V}_{\mathrm{DD} 1}+0.5$	V
Driver block output voltage	Vo2	-0.5 to $\mathrm{V}_{\mathrm{DD} 2}+0.5$	V
Driver output current	lo2	$\pm 150^{\text {Notes } 1}$	mA
Package power dissipation	PD	$1300^{\text {Notes } 2}$	mW
Operating ambient temperature	TA	-20 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg.	-65 to +150	${ }^{\circ} \mathrm{C}$

Notes 1. A period of driver peak output current is less than $1 \mu \mathrm{~s}$ pulse width.
2. $T_{A}=25^{\circ} \mathrm{C}$ (however, values after the chip is soldered to PWB will be TBD.) When $\mathrm{T}_{\mathrm{A}} \geq 25^{\circ} \mathrm{C}$, load should be reduced to $-13 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

RECOMMENDED OPERATING RANGE ($\mathrm{T}_{\mathrm{A}}=-20$ to $+85^{\circ} \mathrm{C}$, $\mathrm{Vss} 1=\mathrm{Vss} 2=0 \mathrm{~V}$)

Item	Symbol	MIN.	TYP.	MAX.	Unit
Logic block supply voltage	$\mathrm{V}_{\mathrm{DD} 1}$	4.5	5.0	5.5	V
Driver block supply voltage	$\mathrm{V}_{\mathrm{DD} 2}$	30		90	V
Input voltage, high	V_{IH}	$0.7 \mathrm{~V}_{\mathrm{DD} 1}$		VDD^{1}	V
Input voltage, low	V_{IL}	0		$0.2 \mathrm{VDD}_{\mathrm{DD}}$	V
Driver output current	lo			± 100	mA

ELECTRICAL SPECIFICATIONS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=90 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$)

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	A (B), $\mathrm{Ioh}^{\text {a }}=-1.0 \mathrm{~mA}$	$0.9 \mathrm{VDD1}$		VDD1	V
Output voltage, low	Vol1	$\mathrm{A}(\mathrm{B}), \mathrm{lol}=1.0 \mathrm{~mA}$	0		0.1V ${ }^{\text {dD1 }}$	V
Output voltage, high	Voh21	O_{1} to O_{40}, $\mathrm{Ioh2}^{\text {a }}$ - 100 mA	70	80		V
	Voh22	O_{1} to $\mathrm{O}_{40}, \mathrm{Ioн2}=-60 \mathrm{~mA}$	78	84		V
Output voltage, low	Vol21	O_{1} to $\mathrm{O}_{40}, \mathrm{lol2}=100 \mathrm{~mA}$		10	20	V
	Vol22	O_{1} to O_{40}, lol2 $=60 \mathrm{~mA}$		6	12	V
Input leakage current	11	$\mathrm{V}_{1}=\mathrm{V}_{\text {DD1 }}$ or $\mathrm{V}_{\text {SS } 1}$			± 1.0	V
Static consumption current	ldD11	Logic, $\mathrm{T}_{\mathrm{A}}=-20$ to $+85^{\circ} \mathrm{C}$			100	$\mu \mathrm{A}$
	ldD12	Logic, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$
	IDD21	Driver, $\mathrm{T}_{\mathrm{A}}=-20$ to $+85^{\circ} \mathrm{C}$			1	mA
	IDD22	Driver, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			100	$\mu \mathrm{A}$

SWITCHING CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=5.0 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{dD} 2}=90 \mathrm{~V}$, Logic $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Driver $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$)

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transmission delay time	tPHL1	CLK \rightarrow A/B			50	ns
	tPLH1				50	ns
	tPLH2	$\overline{\mathrm{CLR}} \rightarrow \mathrm{A} / \mathrm{B}$			60	ns
	tpHL3	$\mathrm{CLK} \rightarrow \mathrm{O}_{1}$ to O_{40}			200	ns
	tPLH3				200	ns
	tpHL4	$\overline{\text { STB }} \rightarrow \mathrm{O}_{1}$ to O_{40}			180	ns
	tPLH4				180	ns
	tPHL5	$\mathrm{BLK} \rightarrow \mathrm{O}_{1}$ to O_{40}			175	ns
	tPLH5				175	ns
	tpHL6	$\mathrm{PC} \rightarrow \mathrm{O}_{1}$ to O_{40}			170	ns
	tPLH6				170	ns
Rise time O_{1} to O_{40}	ttıH	$C \mathrm{~L}=150 \mathrm{pF}$			150	ns
Fall time O_{1} to O_{40}	tтHL	$C L=150 \mathrm{pF}$			150	ns
Maximum clock frequency	$\mathrm{f}_{\text {max }}$.	Data fetch, duty $=50 \%$ With cascading, duty $=50 \%$	20			MHz
			16			MHz
Input capacitance	CI				15	pF

TIMING REQUIREMENTS ($\mathrm{T}_{\mathrm{A}}=-20$ to $+85^{\circ} \mathrm{C}$, $\mathrm{V} \mathrm{DD} 1=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}_{1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$)

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock pulse width	PWCLK		25			ns
Strobe pulse width	PW $\overline{\text { STB }}$		60			ns
Blank pulse width	PWBLK		400			ns
Inverted polarity pulse width	PWPC		400			ns
Clear pulse width	PW $\overline{\text { CLR }}$		120			ns
Data setup time	tsetup		10			ns
Data hold time	thold		10			ns
Clock-strobe time	tcLk- $\overline{\text { STB }}$	CLK $\uparrow \rightarrow \overline{\text { STB } \uparrow}$	60		ns	

Figures in parentheses apply when $R / \bar{L}=H$.

PACKAGE DRAWING

80 PIN PLASTIC QFP (14×20)

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	23.6 ± 0.4	0.929 ± 0.016
B	20.0 ± 0.2	$0.795_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.009}^{+0.009}$
D	17.6 ± 0.4	0.693 ± 0.016
F	1.0	0.039
G	0.8	0.031
H	0.35 ± 0.10	$0.014_{-0.005}^{+0.004}$
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	1.8 ± 0.2	$0.071_{-0.009}^{+0.008}$
L	0.8 ± 0.2	$0.031_{-0.008}^{+0.009}$
M	$0.15_{-0.05}^{+0.10}$	$0.006_{-0.003}^{+0.004}$
N	0.10	0.004
P	2.7	0.106
Q	0.1 ± 0.1	0.004 ± 0.004
R	$5^{\circ} \pm 5^{\circ}$	$5^{\circ} \pm 5^{\circ}$
S	3.0 MAX.	0.119 MAX.
		P80GF-80-3B9-3

Caution Since there are two type packages which lead length is different, need designing to be able to use two packages. (note: page 10, 11)

PACKAGE DRAWING

80 PIN PLASTIC QFP ($\mathbf{1 4 \times 2 0)}$

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	23.2 ± 0.2	$0.913_{-0.008}^{+0.009}$
B	20.0 ± 0.2	$0.787_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	17.2 ± 0.2	$0.677_{ \pm} 0.008$
F	1.0	0.039
G	1.8	0.031
H	0.35 ± 0.10	$0.014_{-0.005}^{+0.004}$
I	0.15	0.006
J	$0.8($ T.P. $)$	0.031 (T.P.)
K	1.6 ± 0.2	0.063 ± 0.008
L	0.8 ± 0.2	$0.031_{-0.008}^{+0.009}$
M	$0.15_{-0.05}^{+0.10}$	$0.006_{-0.003}^{+0.004}$
N	0.10	0.004
P	2.7	0.106
Q	0.125 ± 0.075	0.005 ± 0.003
R	$5^{\circ} \pm 5^{\circ}$	$5^{\circ} \pm 5^{\circ}$
S	3.0 MAX.	0.119 MAX.
		S80GF-80-3B9-3

RECOMMENDED SOLDERING CONDITIONS

Please perform the soldered mounting of this product under the following recommended conditions.
For soldering methods and conditions other than those recommended here, please contact your NEC sales representative.

Surface Mount Type

For details on recommended soldering conditions, please refer to the "Semiconductor Device Mounting Technology Manual" (C10535E).
μ PD16306AGF-3BA

Soldering Method	Soldering Conditions	Recommended Conditions Symbol
Infrared Reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, time: up to 30 sec. (no less than $210^{\circ} \mathrm{C}$), count: twice, restricted number of days: less than 7 days Note	IR-35-207-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, time: up to 40 sec. (no less than $200^{\circ} \mathrm{C}$), count: once, restricted number of days: less than 7 days ${ }^{\text {Note }}$	VP15-207-1
Pin Part Heating	Pin part temperature: no more than $300^{\circ} \mathrm{C}$, time: up to 10 sec., restricted number of days: none ${ }^{\text {Note }}$	

Note This refers to the restricted number of days for storage after decapsulating the dry pack. The storage conditions are no more than $25^{\circ} \mathrm{C}$ and $65 \% \mathrm{RH}$.

Caution Please avoid mixing use of soldering methods (except for pin part heating methods).

References

NEC Semiconductor Device Reliability/Quality Control System (IEI-1212)
Quality Grades of NEC Semiconductor Devices (C11531E)
Semiconductor Device Mounting Technology Manual (C10535E)

NEC
[MEMO]

NEC
[MEMO]

NEC
[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

