

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC8186K$

DIRECT QUADRATURE MODULATOR IC FOR PDC SYSTEMS

DESCRIPTION

The μ PC8186K is a silicon microwave monolithic IC developed as quadrature modulator for PDC systems. This IC integrates a pre-mixer for local signals plus a quadrature modulator operating from 893 MHz to 1 453 MHz. This IC is packaged in 24-pin QFN and therefore is suitable for higher density mounting. This low power IC employs NEC's proprietary bipolar process NESATTM III (fT = 20 GHz) and also has a built-in power save function and can operate 2.7 to 3.6 V supply voltage.

Consequenty the μ PC8186K can contribute to make RF blocks smaller size, higher performance and lower power consumption.

FEATURES

- Directly modulate in 893 to 1 453 MHz
- Built-in pre-mixer for local signals
- External LC filter can be applied between modulator output and pre-mixer input terminal
- Current consumption: Icc = 34 mA TYP. @Vcc = 3.0 V
- Equipped with power save function
- 24-pin QFN suitable for higher density mounting

APPLICATION

• Digital cellular telephone: PDC800 MHz, PDC1.5 GHz

ORDERING INFORMATION

Part Number	Package	Supplying Form
μΡC8186K-E1	24-pin plastic QFN $(4.1 \times 5.2 \times 0.95 \text{ mm})$	Embossed tape 12 mm wide. Pin 1 is in pull-out direction. QTY 2.5 kpcs/reel.

Remark To order evaluation samples, please contact your local NEC sales office. (Part number for sample order: μ PC8186K)

Caution Electro-static sensitive devices

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

INTERNAL BLOCK DIAGRAM AND PIN CONNECTIONS

QUADRATURE MODULATOR SERIES

Part Number	Functions	Icc (mA)	f _{LO1in} (MHz)	f _{LO1in} f _{MODout} ((MHz) (MHz)		Phase Shifter	Package	Application
μPC8101GR	150 MHz Quad. Mod	15/@ 2.7 V	100 to 300	50 to 150	External	F/F	20-pin SSOP	CT-2, etc.
μPC8104GR	RF Up-Converter + IF Quad. Mod	28/@ 3.0 V	100 t	o 400	900 to 1 900	Doubler + F/F	(5.72 mm (225))	Digital Comm.
μPC8105GR	400 MHz Quad. Mod	16/@ 3.0 V	100 t	100 to 400			16-pin SSOP (5.72 mm (225))	
μPC8110GR	1GHz Direct Quad. Mod	24/@ 3.0 V	800 to	800 to 1 000			20-pin SSOP (5.72 mm (225))	PDC800 MHz, etc.
μPC8125GR	RF Up-Converter + IF Quad. Mod + AGC	36/@ 3.0 V	220 t	220 to 270				PHS
μPC8126GR	900 MHz Direct Quad.	35/@ 3.0 V	915 t	o 960	915 to 960			PDC800 MHz
μPC8126K	Mod with Offset-Mixer		889 t	o 960	(LO pre-mixer)		28-pin QFN	
μPC8129GR	×2LO IF Quad. Mod + RF Up-Converter	28/@ 3.0 V	200 to 800	200 to 800 100 to 400		F/F	20-pin SSOP (5.72 mm (225))	GSM, DCS1800, etc.
μΡC8158K	RF Up-Converter + IF Quad. Mod + AGC	28/@ 3.0 V	100 to 300		800 to 1 500	CR	28-pin QFN	PDC800 M/ 1.5 G
μΡC8186K	Direct Quad. Mod. with Offset-Mixer	34/@ 3.0 V	893 to 1 453				24-pin QFN	

For outline of the quadrature modulator series, please refer to the application note 'Usage of μ PC8101, 8104, 8105, 8125, 8129' (Document No. P13251E) and so on.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage	Vcc	Pins 6, 11, 19, 22, 23 T _A = +25°C	5.0	V
Power Save and AGC Control Pin Applied Voltage	Vps/Vagc	Pin 12, T _A = +25°C	5.0	V
Power Dissipation	PD	$T_A = +85^{\circ}C^{Note}$	300	mW
Operating Ambient Temperature	TA		-30 to +85	°C
Storage Temperature	Tstg		-55 to +150	°C

Note $\,$ Mounted on double sided copper clad 50 \times 50 \times 1.6 mm epoxy glass PWB.

RECOMMENDED OPERATING RANGE

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	Pins 6, 11, 19, 22, 23	2.7	3.0	4.0	V
Power Save Voltage	Vps	Pin 12	0	-	0.3	V
AGC Control Voltage	VAGC	Pin 12	1.0	_	2.5	V
Operating Ambient Temperature	TA		-30	+25	+80	°C
Pre-Mixer Output Frequency	fMIXout		893	_	1 453	MHz
Modulator Output Frequency	frFout	fMIXout + fI/Qin	893	-	1 453	MHz
LO_H Input Frequency	fLO_Hin	$P_{LO_{Hin}} = -10 \text{ dBm}$	600	-	1 738	MHz
LO_L Input Frequency	fLO_Lin	$P_{LO_Lin} = -10 \text{ dBm}$	120	-	285	MHz
I/Q Input Frequency	fl/Qin	VI/Qin = 500 mVP-P/pin(MAX) Differential phase input	DC	-	10	MHz
LO_H Input Power	PLO_Hin		-13	-10	-7	dBm
LO_L Input Power	PLO_Lin		-13	-10	-7	dBm
I/Q Input Amplitude	VI/Qin	Differential phase input I/Q (DC) = Ib/Qb (DC) = Vcc/2	-	-	500	mV _{P-P}
I/Q Offset Voltage	I/Q(DC) Ib/Qb(DC)	V _{I/Qin} = 700 mV _{P-P} Single end input	-	1.6	-	V

ELECTRICAL SPECIFICATIONS 1 (BY TEST CIRCUIT 1)

 $T_{A} = +25^{\circ}C, V_{CC1} = V_{CC2} = V_{CC3} = V_{CC4} = V_{CC5} = 3.0 \text{ V}, \text{ unless otherwise specified}, V_{PS}/V_{AGC} = 2.5 \text{ V} (High),$ $I/Q (DC) = Ib/Qb (DC) = V_{CC}/2 = 1.5 \text{ V}, V_{I/bin} = V_{Q/Qbin} = 500 \text{ mV}_{P-P}/\text{pin} (differential phase input), f_{I/Qin} = 2.625 \text{ kHz},$ $\pi/4DQPSK \text{ modulated wave input, Transmission rate: 42 \text{ kbps, Filter roll-off rate: } \alpha = 0.5, \text{ MOD pattern: all zero, f_{LO_Lin} = 180 \text{ MHz}, P_{LO_Lin} = -10 \text{ dBm},$

 $f_{\text{LO}_\text{Hin}} = 768 \text{ MHz}, \text{ } P_{\text{LO}_\text{Hin}} = -10 \text{ dBm},$

 $f_{RFout} = 948 \text{ MHz} + f_{I/Qin}$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Modulator + Pre-Mixer							
Total Circuit Current		ICC(TOTAL)	No signal input	28	34	41	mA
Total Circuit Current at F Mode	ower Save	ICC(PS)TOTAL	V _{PS} ≤ 0.3 V (Low), No signal input	-	0.3	1	μA
AGC Control Current		AGC	VAGC = 3.0 V	-	110	-	μΑ
Total RF Output Power 1		PRFout1	Vagc = 2.5 V	-9.5	-6.5	-4	dBm
Total RF Output Power 2	2	PRFout2	Vagc = 1.0 V	-	-40	-	dBm
Local Carrier Leak		LOL	$f_{LOL} = f_{LO_Lin} + f_{LO_Hin}$	-	-40	-30	dBc
Image Rejection (Side-ba	and Leak)	ImR		_	-40	-30	dBc
I/Q 3rd Order Intermodulation Distortion		IM3(I/Q)		-	-50	-30	dBc
AGC Gain Control Range		GCR	$V_{AGC} = 2 \ V \rightarrow 1 \ V$	27	32	-	dB
Adjacent Channel Power	[.] Leakage	P _{adj}	$\Delta f = \pm 50 \text{ kHz},$ MOD Pattern: PN 9	-	-65	-60	dBc
Power Saving	Rise Time	TPS(Rise)	V_{PS_AGC} (Pin12) = 0 V \rightarrow 2.5 V	-	2	5	μs
Response Time	Fall Time	TPS(Fall)	V_{PS_AGC} (Pin12) = 2.5 V \rightarrow 0 V	I	2	5	μs
I/Q Input Impedance		Zı/q	Value between Pins I/Ib and Q/Qb	Ι	200	-	kΩ
I/Q Input Bias Current		Ινα	Value between Pin I and lb or between Q and Qb	Ι	5	13	μA
Error Vector Magnitude (Vector Error)		EVM	MOD pattern: PN 9	Ι	1.2	3.0	%rms
Noise Floor Level		NFL	$\label{eq:result} \begin{array}{l} f_{\text{RFout}} = 893 \; \text{MHz} \\ f_{\text{center}} = 885 \; \text{MHz}, \; \text{SPAN} = 0 \; \text{Hz}, \\ \text{RBW} = 30 \; \text{kHz}, \; \text{VBW} = 100 \; \text{kHz}, \\ \text{ATT} = 0 \; \text{dB} \end{array}$	-	-134	-131	dBc/Hz

ELECTRICAL SPECIFICATIONS 2 (BY TEST CIRCUIT 2)

 $T_{A} = +25^{\circ}C, V_{CC}1 = V_{CC}2 = V_{CC}3 = V_{CC}4 = V_{CC}5 = 3.0 \text{ V}, \text{ unless otherwise specified}, V_{PS}/V_{AGC} = 2.5 \text{ V} (High),$ $I/Q (DC) = Ib/Qb (DC) = V_{CC}/2 = 1.5 \text{ V}, V_{I/bin} = V_{Q/Qbin} = 500 \text{ mV}_{P-P}/\text{pin} (differential phase input), f_{I/Qin} = 2.625 \text{ kHz},$ $\pi/4DQPSK \text{ modulated wave input, Transmission rate: 42 \text{ kbps, Filter roll-off rate: } \alpha = 0.5, \text{ MOD pattern: all zero,}$ $f_{LO_Lin} = 178.05 \text{ MHz}, P_{LO_Lin} = -10 \text{ dBm},$

 $f_{\text{LO}_\text{Hin}} = 1~619.05~\text{MHz},~\text{P}_{\text{LO}_\text{Hin}} = -10~\text{dBm},$

 $f_{RFout} = 1 \ 441 \ MHz + f_{I/Qin}$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Modulator + Pre-Mixer							
Total Circuit Current		ICC(TOTAL)	No signal input	28	34	41	mA
Total Circuit Current at F Mode	Power Save	ICC(PS)TOTAL	V _{PS} ≤ 0.3 V (Low), No signal input	-	0.3	1	μΑ
AGC Control Current		IAGC	Vagc = 3.0 V	_	110	_	μΑ
Total RF Output Power	1	PRFout1	Vagc = 2.5 V	-11	-9	-6	dBm
Total RF Output Power 2	2	PRFout2	Vagc = 1.0 V	I	-44	-	dBm
Local Carrier Leak		LOL	$f_{LOL} = f_{LO_Lin} + f_{LO_Hin}$	-	-40	-30	dBc
Image Rejection (Side-b	Image Rejection (Side-band Leak)			I	-40	-29	dBc
I/Q 3rd Order Intermodulation Distortion		IM3(I/Q)		-	-50	-30	dBc
AGC Gain Control Rang	e	GCR	$V_{AGC} = 2 \ V \rightarrow 1 \ V$	27	32	_	dB
Adjacent Channel Powe	r Leakage	P _{adj}	$\Delta f = \pm 50 \text{ kHz},$ MOD Pattern: PN 9	-	-65	-60	dBc
Power Saving	Rise Time	TPS(Rise)	VPS_AGC (Pin12) = 0 V \rightarrow 2.5 V	-	2	5	μs
Response Time	Fall Time	TPS(Fall)	VPS_AGC (Pin12) = 2.5 V \rightarrow 0 V	_	2	5	μs
I/Q Input Impedance		Zı/q	Value between Pins I/lb and Q/Qb	-	200	-	kΩ
I/Q Input Bias Current		lı/q	Value between Pin I and lb or between Q and Qb	-	5	13	μΑ
Error Vector Magnitude	(Vector Error)	EVM	MOD pattern: PN 9	_	1.2	3.0	%rms
Suprious within the TX E	Band	Psup	fLo_L ×8, fLo_L ×8 (Image)	_	-70	-65	dBc

ELECTRICAL SPECIFICATIONS 3 (BY TEST CIRCUIT 2^{Note})

TA = +25°C, Vcc1 = Vcc2 = Vcc3 = Vcc4 = Vcc5 = 2.8 V, unless otherwise specified, VPs/VAGC = 2.5 V (High), I/Q (DC) = Ib/Qb (DC) = Vcc/2 = 1.6 V, VI/Qin = 700 mVP-P, VIb/Qbin = 0 VP-P (Single end input), fi/Qin = 2.625 kHz, π /4DQPSK modulated wave input, Transmission rate: 42 kbps, Filter roll-off rate: α = 0.5, MOD pattern: all zero, fLo_Lin = 178.05 MHz, PLo_Lin = -10 dBm,

 $f_{\text{LO_Hin}}$ = 1619.05 MHz, $P_{\text{LO_Hin}}$ = -10~dBm,

 $f_{RFout} = 1441 \text{ MHz} + f_{I/Qin}$

Parameter	Symbol Conditions		MIN.	TYP.	MAX.	Unit		
Modulator + Pre-Mixer								
Total RF Output Power	PRFout	Vagc = 2.5 V	I	-12.5	-	dBm		
Error Vector Magnitude (Vector Error)	EVM	MOD pattern: PN 9	-	1.5	-	%rms		
Adjacent Channel Power Leakage	P_{adj}	$\Delta f = \pm 50 \text{ kHz}$, MOD Pattern: PN 9	-	-65	-60	dBc		

Note Resistor value between pins 20 and 21: $1.3 \text{ k}\Omega$

PIN EXPLANATIONS

Pin No.	Symbol	Supply Voltage (V)	Pin Voltage (V) ^{Note}	Function and Applications	Internal Equivalent Circuit
1	lin	Vcc/2	_	Input for I signal. This input impedance is 200 k Ω . In case of that I/Q input signals are differential, amplitude of the signal is 500 mV _{P-P} max.	Ţ
2	linb	Vcc/2	_	Input for I signal. This input impedance is 200 k Ω . In case of that I/Q input signals are single ended, Vcc/2 biased DC signal should be input. In case of the I/Q input signals are differential, amplitude of the signal is 500 mVP-P max.	
3	Qinb	Vcc/2	_	Input for Q signal. This input impedance is 200 k Ω . In case of that I/Q input signals are differential, amplitude of the signal is 500 mV _{P-P} max.	Ţ
4	Qin	Vcc/2	_	Input for I signal. This input impedance is 200 k Ω . In case of that I/Q input signals are single ended, Vcc/2 biased DC signal should be input. In case of the I/Q input signals are differential, amplitude of the signal is 500 mV _{P-P} max.	
5	N.C.	_	_	This pin is not connected to internal circuit. This pin should be opened or grounded.	
6	Vcc(<i>φ</i>)	2.7 to 4.0	_	Supply voltage pin for modulator circuit.	
7	GND(φ)	0	_	Ground pin for modulator circuit. This pin should be grounded with minimum inductance. Form the ground pattern as widely as possible to minimize ground impedance.	
8	LC1	-	2.64	External inductor and capacitor can	
9	LC2		2.64	supress harmonics spurious of LO frequency. LC value should be determined according to LO input frequency and suppression level.	External 8 9 T T T T T T T T T T T T T

Note Pin Voltages are measured at Vcc = 3.0 V.

Pin No.	Symbol	Supply Voltage (V)	Pin Voltage (V) ^{Note}	Function and Applications	Internal Equivalent Circuit
10	GND (MIX)	0	_	Ground pin for pre-mixer circuit. This pin should be grounded with minimum inductance. Form the ground pattern as widely as possible to minimize ground impedance.	
11	Vcc (MIX)	2.7 to 4.0	-	Supply voltage pin for pre-mixer circuit.	
12	Vps_agc	Vps/Vagc	_	Power save control pin for modulator, pre-mixer and AGC circuits. This pin also assigned as gain control pin for AGC circuits. Operation status with applied voltages are as follows.VPs/VAGC (V)State0 to 0.3OFF (Sleep Mode)1 to 2.5On (AGC Mode)	REG. (12 AGC Cont
13	LO_Lin	_	1.87	Low-band local signal input for pre- mixer. This pin must be coupled with DC cut capacitor 330 pF and should be terminated with 51Ω resistor.	
14	LO_Linb	-	1.87	Bypass pin of pre-mixer's low-band local input. This pin should be decoupled with 330 pF capacitor.	
15	LO_Hin	_	1.93	High-band local signal input for pre- mixer. This pin must be coupled with DC cut capacitor 330 pF and should be terminated with 51Ω resistor.	
16	LO_Hinb	_	1.93	Bypass pin of pre-mixer's high-band local input. This pin should be decoupled with 330 pF capacitor.	
17	GND (PP)	0	-	Ground pin for RF output buffer. This pin should be grounded with minimum inductance. Form the ground pattern as widely as possible to minimize ground impedance.	
18	RFout	_	2.07	RF output pin. This pin is emitter follower which is low impedance output port. This pin can be easily matched to 50Ω impedance using external coupling capacitor.	18 External
19	Vcc (PP)	2.7 to 4.0	-	Supply voltage pin for RF output buffer.	

Note Pin Voltages are measured at Vcc = 3.0 V.

Pin No.	Symbol	Supply Voltage (V)	Pin Voltage (V) ^{Note}	Function and Applications	Internal Equivalent Circuit
20	AGC _{out} 1	-	2.99	Due to the external inductor to output	T
21	AGCout2	-	2.99	line of internal AGC amplifier, suprious can be suppressed.	External
22	Vcc (AGC)	2.7 to 4.0	-	Supply voltage pin for internal AGC amplifier circuit.	
23	Vcc (I/Q)	2.7 to 4.0	-	Supply voltage pin for I/Q mixer circuit.	
24	GND (I/Q)	0	_	Ground pin for modulator circuit. This pin should be grounded with minimum inductance.	

Note Pin Voltages are measured at Vcc = 3.0 V.

TEST CIRCUIT 1

(For fRFout = 948 MHz + fl/Qin)

TEST CIRCUIT 2

(For $f_{RFout} = 1 441 \text{ MHz} + f_{I/Qin}$)

PACKAGE DIMENSIONS

24-PIN PLASTIC QFN (UNIT: mm)

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).
- (3) Keep the track length of the ground pins as short as possible.
- (4) Connect a bypass capacitor to the Vcc pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared Reflow	Package peak temperature: 235°C or below Time: 30 seconds or less (at 210°C) Count: 3, Exposure limit: None ^{Note}	IR35-00-3
VPS	Package peak temperature: 215°C or below Time: 40 seconds or less (at 200°C) Count: 3, Exposure limit: None ^{Note}	VP15-00-3
Partial Heating	Pin temperature: 300°C Time: 3 seconds or less (per side of device) Exposure limit: None ^{Note}	_

Note After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

For details of recommended soldering conditions for surface mounting, refer to information document **SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL** (C10535E).

[MEMO]

NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.

- The information in this document is current as of October, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
 developed based on a customer-designated "quality assurance program" for a specific application. The
 recommended applications of a semiconductor product depend on its quality grade, as indicated below.
 Customers must check the quality grade of each semiconductor product before using it in a particular
 application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).