DC-DC CONVERTER CONTROLLER IC

DESCRIPTION

The $\mu \mathrm{PC} 1935$ is a low-voltage input DC-DC converter controller IC that can configure a three-output (stepup $\times 2$, inverted output $\times 1$) DC-DC converter at an input voltage of $3,3.3$, or 5 V .

Because of its wide operating voltage range, this IC can also be used to control DC-DC converters using an AC adapter for input.

FEATURES

- Low supply voltage: 2.5 V
- Operating voltage range: 2.5 to 20 V (breakdown voltage: 30 V)
- Can control three output channels.
- Timer latch circuit for short circuit protection
- Ceramic capacitor with a low capacitance $(0.1 \mu \mathrm{~F})$ can be used for short circuit protection.
- Dead times of channels 2 (stepup) and 3 (inverted output) can be set from external resistors. Dead time of channel 1 (stepup) is internally fixed to 85%.
- Soft start of each channel can be set independently.
- Each channel can be turned ON/OFF independently.

ORDERING INFORMATION

Part Number	Package
μ PC1935GR	16-pin plastic TSSOP $(225$ mil)

BLOCK DIAGRAM

PIN CONFIGURATION

16-pin plastic TSSOP (225 mil)
μ PC1935GR

PIN FUNCTIONS

Pin No.	Symbol	Function	Pin No.	Symbol	Function
1	Vcc	Power supply	9	OUT_{2}	Channel 2 open-drain output
2	Vref	Reference voltage output	10	FB2	Channel 2 error amplifier output
3	RT	Frequency setting resistor connection	11	112	Channel 2 error amplifier inverted input
4	GND	Ground	12	DTC2	Channel 2 dead time setting
5	DLY	Short-circuit protection/channel 1 soft start capacitor connection	13	OUT_{3}	Channel 3 open-drain output
6	$1 / 1$	Channel 1 error amplifier inverted input	14	FB_{3}	Channel 3 error amplifier output
7	FB1	Channel 1 error amplifier output	15	113	Channel 3 error amplifier inverted input
8	OUT ${ }_{1}$	Channel 1 open-drain output	16	DTC3	Channel 3 dead time setting

1. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Rating	Unit
Supply voltage	V_{cc}	30	V
Output voltage	Vo	30	V
Output current (open-drain output)	ID	21	mA
Total power dissipation	P_{T}	400	mW
Operating temperature	T_{A}	-20 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the product(s). Be sure to use the product(s) within the ratings.
\star Recommended Operating Conditions

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc	2.5		20	V
Output voltage	Vo	0		20	V
Output current	lo			20	mA
Operating temperature	T_{A}	-20		+85	${ }^{\circ} \mathrm{C}$
Oscillation frequency	fosc	20		800	kHz

Block	Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Under voltage lock-out section	Start-up voltage	Vcc (L-H)	$\mathrm{I}_{\text {REF }}=0.1 \mathrm{~mA}$		1.57		V
	Operation stop voltage	Vcc (H-L)	$\mathrm{I}_{\text {Ref }}=0.1 \mathrm{~mA}$		1.5		V
	Hysteresis voltage	V_{H}	$\mathrm{I}_{\text {Ref }}=0.1 \mathrm{~mA}$	30	70		mV
	Reset voltage (timer latch)	Vccr	$\mathrm{I}_{\text {Ref }}=0.1 \mathrm{~mA}$		1.0		V
Reference voltage section	Reference voltage	Vref	$\mathrm{I}_{\text {REF }}=1 \mathrm{~mA}$	2.0	2.1	2.2	V
	Line regulation	REGIN	$2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 20 \mathrm{~V}$		2	12.5	mV
	Load regulation	REGL	$0.1 \mathrm{~mA} \leq \mathrm{I}_{\text {ref }} \leq 1 \mathrm{~mA}$		1	7.5	mV
	Temperature coefficient	$\Delta \mathrm{V}_{\text {ref }} / \Delta \mathrm{T}$	$-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}, \mathrm{I}_{\text {ref }}=0 \mathrm{~A}$		0.5		\%
Oscillation section	fosc setting accuracy	$\Delta \mathrm{fosc}$	$\mathrm{R}_{\mathrm{T}}=18 \mathrm{k} \Omega$	-20		+30	\%
	fosc total stability	$\Delta \mathrm{fosc}$	$\begin{aligned} & -20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}, \\ & 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}} \leq 20 \mathrm{~V} \end{aligned}$	-30		+50	\%
Duty setting section	Input bias current	IBD	(Channels 2 and 3 only)			1.0	$\mu \mathrm{A}$
	Channel 1 maximum duty	Dmax.			85		\%
	Channel 1 soft start time	tss	Cdiy $=0.1 \mu \mathrm{~F}$		50		ms
	Low-level threshold voltage	VTH (L)	$\begin{array}{\|l} \text { Duty }=0 \% \text { (channels } 1 \text { and 2) } \\ \text { Duty }=100 \text { (channel 3) } \end{array}$		1.2		V
	High-level threshold voltage	$\mathrm{V}_{\text {TH }}(\mathrm{H})$	$\begin{aligned} & \text { Duty }=100 \% \text { (channel 2) } \\ & \text { Duty }=0 \% \text { (channel 3) } \end{aligned}$		1.6		V
Error amplifier section	Input threshold voltage	VITH		0.285	0.3	0.315	V
	Input bias current	IB_{B}		-100		100	nA
	Open loop gain	Av	$\mathrm{V}_{0}=0.3 \mathrm{~V}$	70	80		dB
	Unity gain	funity	V o $=0.3 \mathrm{~V}$		1.5		MHz
	Maximum output voltage (+)	Vom ${ }^{+}$	$\mathrm{lo}=-45 \mu \mathrm{~A}$	1.6			V
	Maximum output voltage (-)	Vom ${ }^{-}$	$\mathrm{lo}=45 \mu \mathrm{~A}$			0.5	V
	Maximum sink current	losink	$\mathrm{V}_{\mathrm{FB}}=0.5 \mathrm{~V}$	0.8	1.4		mA
	Output source current	losource	$\mathrm{V}_{\mathrm{FB}}=1.6 \mathrm{~V}$		-70	-45	$\mu \mathrm{A}$
Output section	Output ON voltage	Vol	$\mathrm{R}_{\mathrm{L}}=150 \Omega$			0.6	V
	Rise time	tr	$R_{L}=150 \Omega$		50		ns
	Fall time	$\mathrm{tf}^{\text {f }}$	$R_{L}=150 \Omega$		50		ns
Short-circuit protection section	Input sense voltage	$\mathrm{V}_{\text {TH1 }}$, $\mathrm{V}_{\text {TH2 }}$	Channels 1 and 2		1.9		V
		Vтн3	Channel 3		0.63		V
	UV sense voltage	Vuv			0.8		V
	Source current on short-circuiting	louv		1.0	1.6	2.7	$\mu \mathrm{A}$
	Delay time	toly	$\mathrm{CdLy}=0.1 \mu \mathrm{~F}$		50		ms
Overall	Circuit operation current	Icc	$\mathrm{Vcc}=3 \mathrm{~V}$		3.1		mA

$\star \quad$ Caution Connect a capacitor of $0.01 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ to the Vref pin.

TYPICAL CHARACTERISTIC CURVES (Unless otherwise specified, $\mathrm{Vcc}=3 \mathrm{~V}$, fosc $=100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

2. TIMER LATCH CIRCUIT OPERATION FOR SHORT CIRCUIT PROTECTION (S.C.P.)

The timer latch circuit operates as follows:
If the converter output of each channel drops, the FB output of the error amplifier goes high (FB3 output goes low), and the input level of the SCP comparator drops. If the input level of the SCP comparator drops below 0.63 V , the output of the comparator is inverted, and Q1 turns OFF.

When Q1 turns OFF, the constant-current supply charges CdLy via the DLY pin. The DLY pin is internally connected to a flip-flop. When the DLY pin voltage reaches the UV detection voltage (Vuv $=0.8 \mathrm{~V}$ (TYP.)), the output Q of the flip-flop goes low, and the output stage of each channel is latched to OFF.

The logic of channels 1 and 2 is reverse to that of channel 3 . Consequently, an inverter circuit is inserted between the FB output of channels 1 and 2 , and SCP comparator input.

The input detection voltage $\left(\mathrm{V}_{\mathrm{TH}}\right)$ of the timer latch is 1.9 V (TYP.) for channels 1 and 2 , and 0.63 V (TYP.) for channel 3.

3. ON/OFF CONTROL

The diagram below is an example of a circuit that turns each channel ON/OFF independently. In this example, the action of turning each channel ON/OFF is controlled by negative logic ($\overline{\mathrm{ON}} / \mathrm{OFF}$).

3.1 Channel 1 (for stepup)

The sequence in which channel 1 is turned ON/OFF is as follows:
The signal that turns channel 1 ON/OFF is input from ON 1 . For channel 1 , soft start or timer latch (SCP) is internally selected. Soft start is executed when the first start signal is input. When the end of soft start is detected, the soft start select switch is turned OFF and the timer latch circuit operates.
(1) When ON_{1} is high: OFF status

Q11: ON \rightarrow DLY pin: Low level \rightarrow Output duty of PWM comparator: 0%
$\mathrm{D}_{11}: \mathrm{ON} \rightarrow \mathrm{l}_{11}$ pin: High level \rightarrow FB1 output: Low level
(2) When ON_{1} is low: ON status (start up)

Q11: OFF \rightarrow Cdly is charged in the sequence of [VREF $\rightarrow R_{1} \rightarrow$ SW \rightarrow DLY pin \rightarrow CdLy] \rightarrow Soft start
$\mathrm{D}_{11}:$ OFF $\rightarrow \mathrm{l}_{11}$ pin: Low level \rightarrow FB1 output: High level
(3) When ON ${ }_{1}$ goes high again after start up (SW: OFF): OFF status

Q11: ON \rightarrow DLY pin: Low level (Nothing happens because SW is OFF.)
$\mathrm{D}_{11}: \mathrm{ON} \rightarrow \mathrm{I}_{11}$ pin: High level \rightarrow FB1 output: Low level \rightarrow PWM comparator output duty: 0% \rightarrow Converter output voltage (Vo1) drops.

Remark Even if start up is executed by making ON_{1} low again after (3), soft start is not executed because the soft start select switch (SW) remains OFF. To execute soft start of channel 1 again, drop Vcc to 0 V once.

3.2 Channel 2 (for stepup)

The sequence in which channel 2 is turned ON/OFF is as follows:
The signal that turns channel 2 ON/OFF is input from ON2. The PWM converter can be turned ON/OFF by controlling the level of the DTC2 pin. However, it is necessary to keep the level of the FB_{2} output low (the SCP comparator input high) so that the timer latch does not start when the PWM converter is OFF. In this circuit example, the FB 2 output level is controlled by controlling the level of the liz pin.
(1) When ON_{2} is high: OFF status

Q21: ON \rightarrow DTC2 pin: Low level \rightarrow Output duty of PWM comparator: 0%
D21: ON \rightarrow I2 pin: High level \rightarrow FB2 output: Low level \rightarrow SCP comparator output: High level \rightarrow Timer latch stops.
(2) When ON_{2} is low: ON status
$\mathrm{Q}_{21}: \mathrm{OFF} \rightarrow \mathrm{C}_{21}$ is charged in the sequence of $\left[\mathrm{V}_{\mathrm{REF}} \rightarrow \mathrm{R}_{23} \rightarrow \mathrm{C}_{21}\right] \rightarrow \mathrm{DTC} 2$ pin voltage rises \rightarrow Soft start
D_{21} : OFF \rightarrow II2 pin: Low level $\rightarrow \mathrm{FB} 2$ output: High level \rightarrow SCP comparator output: Low level $\rightarrow \mathrm{Q}_{1}$ is OFF \rightarrow Charging Coly starts (timer latch start).

Caution Keep the low-level voltage of the DTC_{2} pin within 1.2 V and the high-level voltage of the $\mathrm{l} / 2$ pin at 0.3 V or higher. The maximum voltage that is applied to the l 2 pin must be equal to or lower than $V_{\text {ref. }}$

3.3 Channel 3 (for inverted output)

The sequence in which channel 3 is turned ON/OFF is as follows:
The signal that turns channel 3 ON/OFF is input from ON_{3}. The PWM converter can be turned ON/OFF by controlling the level of the DTC 3 pin. However, it is necessary to keep the level of the FB3 output high so that the timer latch does not start when the PWM converter is OFF. In this circuit example, the FB3 output level is controlled by controlling the level of the lıз pin.

Because channel 3 supports an inverted converter, its PWM comparator logic is different from that of channels 1 and 2.
(1) When ON_{3} is high: OFF status

Q31: ON \rightarrow Q32: ON \rightarrow DTC3 pin: High level \rightarrow Output duty of PWM comparator: 0%
Q_{3} : $\mathrm{ON} \rightarrow$ lıз pin: Low level \rightarrow FB3 output: High level \rightarrow SCP comparator output: High level $\rightarrow \mathrm{Q}_{1}$ is ON . \rightarrow Timer latch stops.

(2) When ON_{3} is low: ON status

$Q_{31}:$ OFF \rightarrow Q $_{32}$ is OFF. $\rightarrow C_{31}$ is charged in the sequence of $\left[V_{R E F} \rightarrow C_{31} \rightarrow R_{34}\right] \rightarrow$ DTC3 pin voltage drops.
\rightarrow Soft start
Qзз: OFF \rightarrow Iıз pin: High level \rightarrow FB3 output: Low level \rightarrow SCP comparator output: Low level \rightarrow Q1: OFF
\rightarrow Charging Cdly starts (timer latch start).

Caution Keep the high-level voltage of the DTC_{3} pin at 1.6 V or higher and the low-level voltage of the ${ }^{\mathrm{l}} 3$ pin within 0.3 V . The maximum voltage that is applied to the lı3 pin must be equal to or lower than Vref.

4. PACKAGE DRAWING

16 PIN PLASTIC TSSOP (225 mil)

NOTE
Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	5.15 ± 0.15
$\mathrm{~A}^{\prime}$	5.0 ± 0.1
B	0.375 MAX.
C	0.65 (T.P.)
D	$0.24_{-0.04}^{+0.06}$
E	$0.09_{-0.04}^{+0.06}$
F	$1.01_{-0.06}^{+0.09}$
G	0.92
H	6.4 ± 0.2
I	4.4 ± 0.1
J	1.0 ± 0.2
K	$0.145_{-0.045}^{+0.055}$
L	0.5
M	0.10
N	0.10
P	$3^{\circ+5^{\circ}}$
R	0.25
S	0.6 ± 0.15
	S16GR-65-PJG

5. RECOMMENDED SOLDERING CONDITIONS

Recommended solder conditions for this product are described below.
For details on recommended soldering conditions, refer to Information Document "Semiconductor Device Mounting Technology Manual" (C10535E).

For soldering methods and conditions other than those recommended, consult NEC.

Surface mount type

μ PC1935GR: 16-pin plastic TSSOP (225 mil)

Soldering Method	Soldering Conditions	Symbol of Recommended Conditions
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds MAX. ($210^{\circ} \mathrm{C}$ MIN.), Number of times: 3 MAX.	IR35-00-3
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds MAX. ($200^{\circ} \mathrm{C}$ MIN.), Number of times: 3 MAX.	VP15-00-3
Wave soldering	Soldering bath temperature: $260^{\circ} \mathrm{C}$ MAX., Time: 10 seconds MAX., Number of times: 1, Preheating temperature: $120^{\circ} \mathrm{C}$ MAX. (package surface temperature)	WS60-00-1

Caution Do not use two or more soldering methods in combination.
[MEMO]

NEC
[MEMO]
[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vdo or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

