DC-DC CONVERTER CONTROL IC

DESCRIPTION

The μ PC1933 is an IC that controls a low-voltage input DC-DC converter. This IC is suitable for an operation with3-V, $3.3-\mathrm{V}$ input or a lithium ion secondary battery input, because the minimum operating supply voltage is 2.5 V .

Because of its wide operating voltage range, it can also be used to control DC-DC converters that use an AC adapter for input.

FEATURES

- Low supply voltage: 2.5 V (MIN.)
- Operating voltage range: 2.5 to 20 V (breakdown voltage: 30 V)
- Timer latch circuit for short-circuit protection.
- Ceramic capacitor with low capacitance ($0.1 \mu \mathrm{~F}$) can be used for short-circuit protection.
- Open drain output (1 cannel: This output can be used to control a step-down converter, a step-up converter.)
- Dead time is internally fixed to 85%.
- Soft start function (with a circuit to convert the timer latch circuit.)

ORDERING INFORMATION

Part Number	Package
μ PC1933GR	8-pin plastic SOP $(5.72 \mathrm{~mm}(225))$

[^0]
BLOCK DIAGRAM

PIN CONFIGURATION (Top View)

8-pin plastic SOP (5.72 mm (225))

- μ PC1933GR

PIN FUNCTIONS

Pin No.	Symbol	Function	Pin No.	Symbol	Function
1	II	Error amplifier inverted input	5	OUT	Open-drain output
2	DLY	Short-circuit protection	6	GND	Ground
3	VCC	Power supply	7	RT	Frequency setting resistor connection
4	VrEF	Reference voltage output	8	FB	Error amplifier output

CONTENTS

1. ELECTRICAL SPECIFICATIONS 5
^ 2. CONFIGURATION AND OPERATION OF EACH BLOCK 11
2.1 Reference Voltage Generator 11
2.2 Oscillator 11
2.3 Under Voltage Lock-out Circuit 11
2.4 Error Amplifier 11
2.5 PWM Comparator 12
2.6 Timer Latch-Method Short Circuit Protection Circuit 12
2.7 Output Circuit. 12

* 3. NOTES ON USE 13
3.1 Setting the Output Voltage 13
3.2 Setting the Oscillation Frequency 13
3.3 Preventing Malfunction of the Timer Latch-Method Short Circuit Protection Circuit. 13
3.4 ON/OFF Control 14
3.5 Maximum Duty Limit 15
3.6 Notes on Actual Pattern Wiring 15

4. APPLICATION EXAMPLE 16
4.1 Application Example 16
4.2 List of External Parts 16
5. PACKAGE DRAWING 17
6. RECOMMENDED SOLDERING CONDITIONS 18

1. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Ratings	Unit
Supply voltage	Vcc	30	V
Output voltage	Vo	30	V
Output current (open drain output)	lo	21	mA
Total power dissipation	P_{T}	480	mW
Operating ambient temperature	T_{A}	-20 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Conditions

Parameter	Symbol	Ratings		Unit
Supply voltage	Vcc	2.5		20
Output voltage	Vo	0		20
Output current	lo			20
Operating temperature	T_{A}	-20		20
Oscillation frequency	fosc	20		+85

\star Caution The recommended operating range may be exceeded without causing any problems provided that the absolute maximum ratings are not exceeded. However, if the device is operated in a way that exceeds the recommended operating conditions, the margin between the actual conditions of use and the absolute maximum ratings is small, and therefore thorough evaluation is necessary. The recommended operating conditions do not imply that the device can be used with all values at their maximum values.

Electrical Characteristics (unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$, $\mathrm{Vcc}=\mathbf{3 V}$, fosc $=100 \mathrm{kHz}$)

Block	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Under voltage Lock-out section	Start-up voltage	Vcc (L-H)	$\mathrm{I}_{\text {REF }}=0.1 \mathrm{~mA}$		1.57		V
	Operation stop voltage	VCC (H-L)	$\mathrm{I}_{\text {REF }}=0.1 \mathrm{~mA}$		1.5		V
	Hysteresis voltage	V_{H}	$\mathrm{I}_{\text {ref }}=0.1 \mathrm{~mA}$	30	70		mV
	Reset voltage (timer latch)	VCCR	$\mathrm{I}_{\text {Ref }}=0.1 \mathrm{~mA}$		1.0		V
Reference Voltage section	Reference voltage	V ${ }_{\text {Ref }}$	$\mathrm{I}_{\text {REF }}=1 \mathrm{~mA}$	2.0	2.1	2.2	V
	Line regulation	REGIN	$2.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 20 \mathrm{~V}$		2	12.5	mV
	Load regulation	REGL	$0.1 \mathrm{~mA} \leq$ limef $^{1} 1 \mathrm{~mA}$		2	7.5	mV
	Temperature coefficient	$\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{T}$	$-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, Iref $=0 \mathrm{~A}$		0.5		\%
Oscillation section	fosc setting accuracy	$\Delta \mathrm{fosc}$	$\mathrm{RT}=18 \mathrm{k} \Omega$	-20		+30	\%
	fosc total stability	$\Delta \mathrm{fosc}$	$\begin{aligned} & -20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}, \\ & 2.5 \mathrm{~V} \leq \mathrm{V} \mathrm{cc} \leq 20 \mathrm{~V} \end{aligned}$	-20		+50	\%
PWM comparator section	Maximum duty	Dmax.			85		\%
	Soft start time	tss	$\mathrm{CdLy}=0.1 \mu \mathrm{~F}$		50		ms
Error Amplifier section	Input threshold voltage	Vith		0.285	0.3	0.315	V
	Input bias current	Ів		-100		+100	nA
	Open loop gain	A_{v}	V o $=0.3 \mathrm{~V}$	70	80		dB
	Unity gain	funity	$\mathrm{Vo}=0.3 \mathrm{~V}$		1.5		MHz
	Maximum output voltage (+)	Vom ${ }^{+}$	$\mathrm{lo}=-45 \mu \mathrm{~A}$	1.6	2		V
	Maximum output voltage (-)	Vом ${ }^{-}$	$\mathrm{lo}=45 \mu \mathrm{~A}$		0.02	0.5	V
	Output sink current	losink	$\mathrm{V}_{\mathrm{FB}}=0.5 \mathrm{~V}$	0.8	1.4		m A
	Output source current	Iosource	$\mathrm{V}_{\mathrm{FB}}=1.6 \mathrm{~V}$		-70	-45	$\mu \mathrm{A}$
	Drain cutoff current	ILEAK	V o $=30 \mathrm{~V}$			100	$\mu \mathrm{A}$
	Output ON voltage	Vol	$R \mathrm{~L}=150 \Omega$		0.2	0.6	V
	Rise time	tr	$R \mathrm{~L}=150 \Omega$		50		ns
	Fall time	tf	$R \mathrm{~L}=150 \Omega$		60		ns
Short-circuit Protection section	Input sense voltage	$V_{\text {TH }}$		1.75	1.92	2.05	V
	UV sense voltage	Vuv			0.8	0.85	V
	Source current on short-circuiting	louv		1.0	1.6	2.7	$\mu \mathrm{A}$
	Delay time	tdly	Cdoy $=0.1 \mu \mathrm{~F}$		50		ms
Overall	Circuit operation current	Icc	$\mathrm{Vcc}=3 \mathrm{~V}$	1.4	2.6	3.9	mA

Caution Connect a capacitor of 0.01 to $10 \mu \mathrm{~F}$ to the Vref pin.

Timing Chart

Typical Characteristic Curves (unless otherwise specified, $\mathrm{Vcc}=3 \mathrm{~V}$, fosc $=100 \mathrm{kHz}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) (Nominal)

Vref vs T_{A}

Δ fosc vs TA

Vref vs Vcc

fosc vs RT

Vol vs lo

toly vs T_{A}

Operating ambient temperature $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$

Ł 2. CONFIGURATION AND OPERATION OF EACH BLOCK

Figure 2-1 Block Diagram

2.1 Reference Voltage Generator

The reference voltage generator is comprised of a band-gap reference circuit, and outputs a temperature-compensated reference voltage (2.1 V). The reference voltage can be used as the power supply for internal circuits, or as a reference voltage, and can also be accessed externally via the Vref pin (pin 4).

2.2 Oscillator

The oscillator self-oscillates if a timing resistor is attached to the RT pin (pin 7). This oscillator waveform is input to the inverted input pin of the PWM comparator to determine the oscillation frequency.

2.3 Under Voltage Lock-out Circuit

The under voltage lock-out circuit prevents malfunctioning of the internal circuits when the supply voltage is low, such as when the supply voltage is first applied, or when the power supply is interrupted. When the voltage is low, the output transistor is cut off at the same time.

2.4 Error Amplifier

The non-inverted input pin of the error amplifier is connected internally to 0.3 V (the input threshold voltage is 0.3 V (TYP.)). The first stage of the error amplifier is a P -channel MOS transistor input.

2.5 PWM Comparator

The output ON duty is controlled according to the outputs of the error amplifier.
A triangular waveform is input to the inverted pin, and the error amplifier output and Dead Time Control pin voltage (fixed internally) are input to the non-inverted pins of the PWM comparator. Therefore, the output transistor ON period is the period when the triangular waveform is lower than the error amplifier output and Dead Time Control pin voltage (fixed internally) (refer to Timing Chart).

2.6 Timer Latch-Method Short Circuit Protection Circuit

When the output of the converter drops, the non-inverted input pin (1 pin) voltage of the error amplifier drops, and the FB output of the error amplifier of the output goes high. If the FB output exceeds the timer latch input detection voltage $\left(\mathrm{V}_{\mathrm{TH}}=1.92 \mathrm{~V}\right)$, then the output of the SCP comparator goes low, and Q_{1} goes off.
When Q1 turns OFF, the constant-current supply charges Coly via the DLY pin. The DLY pin is internally connected to a flip-flop. When the DLY pin voltage reaches the UV detection voltage (VuV $=0.7 \mathrm{~V}$ (TYP.)), the output Q of the flip-flop goes low, and the output stage is latched to OFF (refer to Figure 2-1 Block Diagram).

Make the power supply voltage briefly less than the reset voltage (Vcce, 1.0 V TYP.) to reset the latch circuit when the short-circuit protection circuit has operated.

2.7 Output Circuit

The output circuit has an N -channel open-drain output providing an output withstand voltage of 30 V (absolute maximum rating), and an output current of 21 mA (absolute maximum rating).

3. NOTES ON USE

3.1 Setting the Output Voltage

Figure 3-1 illustrates the method of setting the output voltage. The output voltage is obtained using the formula shown in the figure.

The input threshold value of the error amplifier is 0.3 V (TYP.) for the error amplifier. Therefore, select a resistor value that gives this voltage.

Figure 3-1 Setting the Output Voltage

3.2 Setting the Oscillation Frequency

Choose RT according to the oscillation frequency (fosc) vs timing resistor (RT_{T}) characteristics (refer to Typical Characteristics Curves fosc vs Rt.) The formula below (3-1) gives an approximation of fosc. However, the result of formula $3-1$ is only an approximation, and the value must be confirmed in actual operation, especially for high-frequency operation.

$$
\begin{equation*}
\operatorname{fosc}[\mathrm{Hz}] \cong 1.856 \times 10^{9} / \operatorname{Rt}[\Omega] \tag{3-1}
\end{equation*}
$$

3.3 Preventing Malfunction of the Timer Latch-Method Short Circuit Protection Circuit

The timer latch short-circuit protection circuit operates when the error amplifier output (pin 8) exceed approximately 1.92 V, and cuts off the output. However, if the rise of the power supply voltage is fast, or if there is noise on the DLY pin (pin 2), the latch circuit may malfunction and cut the output off.
To prevent this, lower the wiring impedance between the DLY pin and the GND pin (pin 6), and avoid applying noise to the DLY pin.

3.4 ON/OFF Control

The ON/OFF control method of the output oscillation is to input the ON/OFF signal from ON as shown in Figure 3-2. Soft start or timer latch (SCP) is internally selected. Soft start is executed when the first start signal is input. When the end of soft start is detected, the soft start select switch is turned OFF and the timer latch circuit operates.

Figure 3-2 ON/OFF Control

(1) When ON is high: OFF status

Q1: ON \rightarrow DLY pin: Low level \rightarrow Output duty of PWM comparator: 0%
$\mathrm{D}_{1}: \mathrm{ON} \rightarrow$ lı in: High level \rightarrow FB output: Low level
(2) When ON is low: ON status (start up)
$Q_{1}:$ OFF \rightarrow CdLy is charged in the sequence of $\left[V_{\text {ref }} \rightarrow R_{1} \rightarrow\right.$ SW \rightarrow DLY pin \rightarrow CdLy \rightarrow Soft start
$D_{1}:$ OFF \rightarrow lı pin: Low level \rightarrow FB output: High level
(3) When ON goes high again after start up (SW: OFF): OFF status

Q1: ON \rightarrow DLY pin: Low level (Nothing happens because SW is OFF.)
$\mathrm{D}_{1}: \mathrm{ON} \rightarrow$ lı pin: High level \rightarrow FB output: Low level \rightarrow PWM comparator output duty: 0%
\rightarrow Converter output voltage (Vo) drops.

Caution Even if start up is executed by making ON low again after (3), soft start is not executed because the soft start select switch (SW) remains OFF. To execute soft start again, drop Vcc to 0 V once.

3.5 Maximum Duty Limit

μ PC1933 is switched internally between Soft Start and Timer Latch. For this reason, the DTC voltage is fixed internally, and the maximum duty is limited to 85%.

3.6 Notes on Actual Pattern Wiring

When actually carrying out the pattern wiring, it is necessary to separate control-related grounds and power-related grounds, and make sure that they do not share impedances as far as possible. In addition, make sure the high-frequency impedance is lowered using capacitors and other components to prevent noise input to the Vref pin.

4. APPLICATION EXAMPLE

4.1 Application Example

Figure 4-1 shows an example circuit for obtaining $+5 \mathrm{~V} / 50 \mathrm{~mA}$ from $\mathrm{a}+3 \mathrm{~V}$ power supply.

Figure 4-1 Application Example

4.2 List of External Parts

The list below shows the external parts.

Table 4-1 List of External Parts

Symbol	Parameter	Function	Part number	Maker	Remark
C_{4}	$68 \mu \mathrm{~F}$	Output capacitor	20SA68M	SANYO	OS-CON, SA series
D_{1}		Schottkey diode	D1FS4	SHINDENGEN	
L_{1}	$47 \mu \mathrm{H}$	Choke inductor	636FY-470M	TOKO	D73F series
Q_{3}		Switching transistor	2SD2403	NEC	
Q_{1}		Buffer transistor	2SC1623	NEC	
Q_{2}		Buffer transistor	2SA812	NEC	

Remarks 1. The capacitors that are not specified in the above list are multilayer ceramic capacitors.

2. The resistors that are not specified in the above list are $1 / 4 \mathrm{~W}$ resistors.

5. PACKAGE DRAWING

8-PIN PLASTIC SOP (5.72 mm (225))

detail of lead end

NOTE

Each lead centerline is located within 0.12 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	$5.2_{-0}^{+0.17}$
B	0.78 MAX.
C	1.27 (T.P.)
D	$0.42_{-0.07}^{+0.08}$
E	0.1 ± 0.1
F	1.59 ± 0.21
G	1.49
H	6.5 ± 0.3
I	4.4 ± 0.15
J	1.1 ± 0.2
K	$0.17_{-0}^{+0.08}$
L	0.6 ± 0.2
M	0.12
N	0.10
P	$3_{-3^{\circ}}^{\circ+7^{\circ}}$
	S8GM-50-225B-6

6. RECOMMENDED SOLDERING CONDITIONS

Recommended solder conditions for this product are described below.
For details on recommended soldering conditions, refer to Information Document "Semiconductor Device Mounting

Technology Manual" (C10535E).

For soldering methods and conditions other than those recommended, consult NEC.

Surface Mount Type

μ PC1933GR: 8-pin plastic SOP (5.72 mm (225))

Soldering Method	Soldering Conditions	Symbol of Recommended Conditions
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds MAX. $\left(210^{\circ} \mathrm{C} \mathrm{MIN}.\right)$, Number of times: 3 MAX.	IR35-00-3
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds MAX. $\left(200^{\circ} \mathrm{C}\right.$ MIN. $)$, Number of times: 3 MAX.	$\mathrm{VP} 15-00-3$
Wave soldering	Soldering bath temperature: $260^{\circ} \mathrm{C}$ MAX., Time: 10 seconds MAX., Number of times: 1, Preheating temperature: $120^{\circ} \mathrm{C} \mathrm{MAX}. \mathrm{(package} \mathrm{surface} \mathrm{temperature)}$	$\mathrm{WS} 60-00-1$

Caution Do not use two or more soldering methods in combination.

NOTES FOR BiCMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.
(2) HANDLING OF UNUSED INPUT PINS

Note:
No connection for device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. Input levels of devices must be fixed high or low by using a pull-up or pulldown circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF BiCMOS DEVICES

Note:
Power-on does not necessarily define initial status of device. Production process of BiCMOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

[MEMO]

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

[^0]: The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
 Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

