

1.3 GHz Prescaler with Scaling Factors 64, 128 and 256

Description

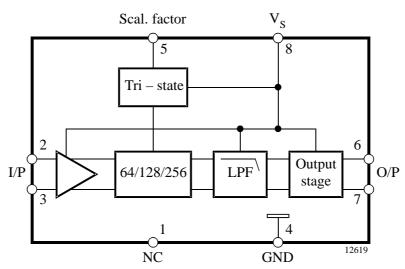
This prescaler requires a power supply of 5 V and has a scaling factor of 64, 128 and 256. The scaling factors are programmed via Pin 5. If this pin is not connected, a

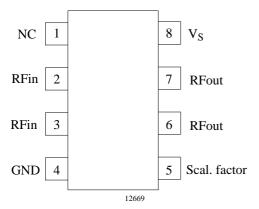
scaling factor of 64 is programmed. Scaling factor 256 is programmed by connecting Pin 5 to ground and scaling factor 128 is programmed by connecting Pin 5 to +5 V.

Features

- Low current consumption (typ. 18 mA)
- Output harmonics strongly reduced
- 3 scaling factors 64/128/256 programmable at Pin 5
- High input sensitivity
- Emitter follower output stage
- Electrostatic protection

Block Diagram




Figure 1. Block diagram

Ordering Information

Extended Type Number	Package	Remarks
U893BSE-AFPG3	SO8 plastic package	Taped and reeled

Pin Description

Figure	2	Pin	ning
5			

Pin	Symbol	Function
1	NC	Not connected
2	RFin	RF input
3	RFin	RF input
4	GND	Ground
5	Scal. factor	Scaling factor programming pin
6	RFout	RF output
7	RFout	RF output
8	V_{S}	Supply voltage

Absolute Maximum Ratings

All voltages are refferred to GND, Pin 4

Parameters		Symbol	Min.	Max.	Unit
Supply voltage	Pin 8	V_{S}		6	V
Input voltage range	Pins 2, 3 and 5	Vi	0	V_{S}	V
Junction temperature		T _{jmax}		125	°C
Storage temperature range		T_{stg}	-40	+125	°C

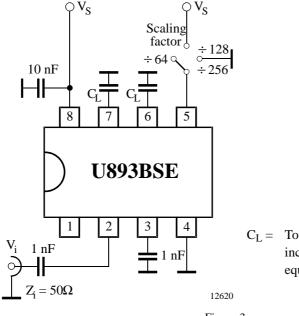
Operating Range

All voltages are refferred to GND, Pin 4

Parameters		Symbol	Min.	Тур.	Max.	Unit
Supply voltage	Pin 8	V_{S}	4.5	5.0	5.5	V
Ambient temperature		T _{amb}	-25		+85	°C

Thermal Resistance

Parameters	Symbol	Maximum	Unit
Junction ambient Package SO8 soldered to PCB	R_{thJA}	175	K/W

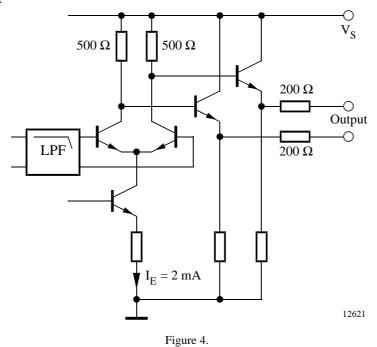

Electrical Characteristics

Test conditions: $V_S = 4.5$ to 5.5 V, $T_{amb} = 0$ to 70° C, referred to test circuit, unless otherwise specified

Parameters	Test Con	ditions / Pin	Symbol	Min.	Тур.	Max.	Unit
Supply voltage range		Pin 8	V_{S}	4.5		5.5	V
Supply current	$V_S = 5 \text{ V}$	Pin 8	Is		21	25	mA
Input sensitivity 1)	$f_i = 70 \text{ to } 110$		vi			10	mV
		Pins 2 and 3					
	$f_i = 1100 \text{ to } 1$		v _i			15	mV
		Pins 2 and 3					
	$f_i = 1200 \text{ to } 1$	1300 MHz Pins 2 and 3	v _i			20	mV
Large signal compatibility	$R_G = 50 \Omega$	Pins 2 and 3	V _i	300			mV
Frequency range		Pins 2 and 3	fi	70		1300	MHz
Emitter follower output	•		•	,		•	
Voltage swing each output	$f_i \le 1000 \text{ MHz},$						
	$C_L = 13 \text{ pF}, 3$		V_{O}	0.6	0.7		V_{pp}
		Pins 6 and 7					
Output impedance		Pins 6 and 7	Z _O		200		Ω
Third order harmonics	$f_i = 700 \text{ to } 90$		20 × 1	V_{O3f}			
suppression	$C_L = 13 \text{ pF}, 1$		$20 \times log \frac{V_{O3f}}{V_{O1f}}$		-30		dB
		Pins 6 and 7					
Scaling factor programmi	ng input						
Switching voltage for					Pin		
scaling factor 1:64		Pin 5	V_{SF}		open		
1:128			V_{SF}	$V_{\rm S} - 0.5$	0	0.0	V
1:258			V _{SF}		0	0.3	
Switching current		D : -			4.50		
scaling factor 1:128	$V_S = 5 V$	Pin 5	I_{SF}		150		μΑ
1:258	$V_S = 0 V$	Pin 5	I_{SF}		-150		μΑ

¹⁾ RMS-voltage calculated from the measured available power

Test Circuit



$$\begin{split} C_L = & \quad \text{Total capacitive output load} \\ & \quad \text{including test fixture and test} \\ & \quad \text{equipment capacitance} \end{split}$$

Figure 3.

Output Circuit

Emitter follower output

Input Sensitivity

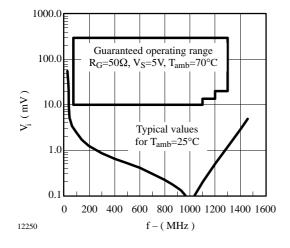
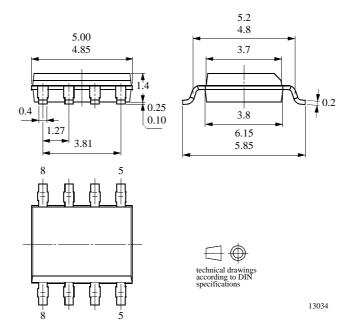



Figure 5.

Package Information

Package SO8 Dimensions in mm

U893BSE

Ozone Depleting Substances Policy Statement

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423