

1.3-GHz Prescaler for PLLs in TV, CATV and SAT TV Tuners

Technology: Bipolar

Features

- U833BS ECL output stage
- U833BSE emitter follower output stage
- 3 scaling factors 64/128/256 programmable at Pin 5
- High input sensitivity

- Low output impedance
- Low power consumption
- Pin-compatible to the U6xxB series except Pin 5
- Electrostatic protection according to MIL-STD. 883

Case

8-pin dual-inline plastic (U833BS, U833BSE) 8-pin SO plastic (U833BS-FP, U833BSE-FP) 6-pin SIP plastic (U833BS-SP, U833BSE-SP)

Absolute Maximum Ratings

Reference point Pin 4 (1)

Parameters		Symbol	Value	Unit
Supply voltage	upply voltage Pin 8 (4)		6	V
Input-voltage range Pin 2, 3, 5 (2, 5, 6)		Vi	0 to V _S	V
Junction temperature		Ti	125	°C
Storage-temperature range		T _{stg}	-40 to +125	°C
Ambient-temperature range		T _{amb}	-25 to +70	°C

Maximum Thermal Resistance

Parameters		Symbol	Maximum	Unit
Junction ambient	Junction ambient DIP8		100	K/W
	SIP6	R_{thJA}	100	K/W
	SO8	R _{thJA}	175	K/W

Note:

The device is self-oscillating without input signal

Block Diagram

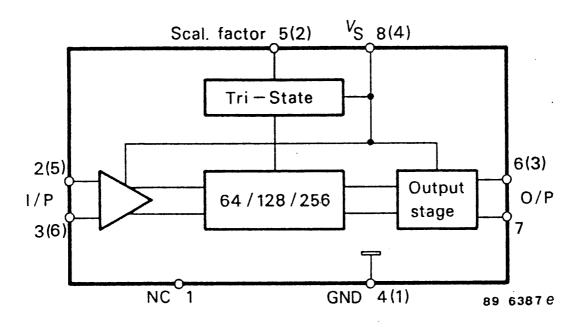


Figure 1.

Pin Connection (DIP8, SO8)

Pin	Function		
1	Not connected		
2, 3	Input		
4	Ground		
5	Switch 64/128/256		
6, 7	Output		
8	V_{S}		

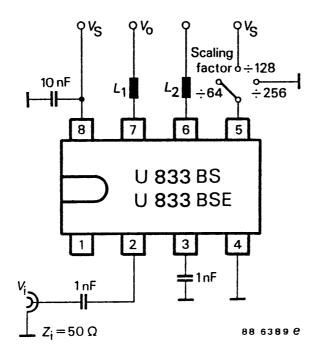
Pin Connection (DIP8, SO8)

Pin	Function
1	Ground
2	Switch 64/128/256
3	Output
4	V_S
5, 6	Input

Note:

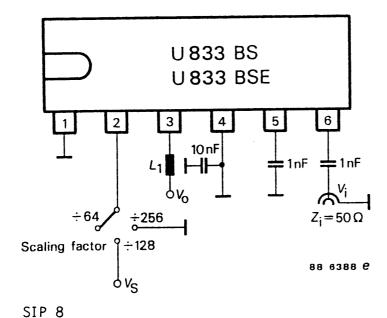
Pin numbers without brackets apply to DIP8 and SO8 package, Pin numbers with brackets to SIP6

RMS voltage calculated from the available power measured


Electrical Characteristics

 V_S = 4.5 to 5.5 $V_{,}$ T_{amb} = 0 to +70 °C, referred to test circuit, unless otherwise specified

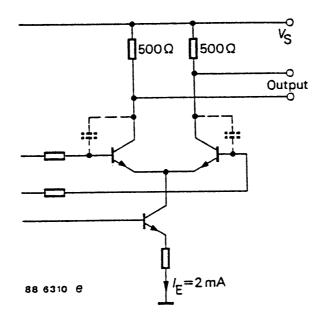
Parameters	Test Conditions / Pin		Symbol	Min	Тур	Max	Unit
Supply current 1)	$V_S = 5 \text{ V}$	Pin 8 (4)	I _S		40	50	mA
Input sensitivity ²⁾	$R_G = 50 \Omega$						
	$f_i = 70 \text{ to } 10$	00 MHz Pin 2, 3 (5,	Vi			10	mV
	$f_i = 1000 \text{ to}$	1300 MHz Pin 2, 3 (5,	V _i			20	mV
Large-signal compatibility	$R_G = 50 \Omega$	Pin 2, 3 (5,	Vi	300			mV
Frequency range			f _{imin}			70	MHz
			f _{imax}	1300			MHz
Output stage							
a. Balanced ECL output							
Voltage swing each output	$R_L = 10 \text{ k//1}$	3 pF Pin 6, 7 (3)	V_{O}	0.8			V _{pp}
Output impedance		Pin 6, 7 (3)	Z _O		500		Ω
b. Emitter follower							
Voltage swing each output	$R_L = 10 \text{ k//1}$	3 pF Pin 6, 7 (3)	V _O	1			V _{pp}
Output impedance		Pin 6, 7 (3)	Z _O		200		Ω
Switching voltage for	./. 64	Pin 5 (2)	V _{SF}		open		
	./. 128	Pin 5 (2)	V _{SF}	$V_{S} - 0.5$			V
	./. 256	Pin 5 (2)	V _{SF}		0	0.5	V



Test Circuits

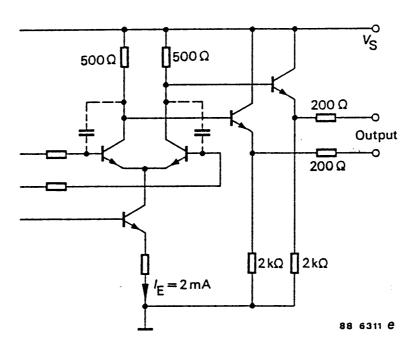
DIP 8/S0 8

Figure 2.



 $L_1 = L_2 = 150 \text{ nH (6 turns CuL 0.45 mm Ø on 4 mm Ø)}$

Figure 3.



Output Circuits

ECL output (U 833 BS)

Figure 4.

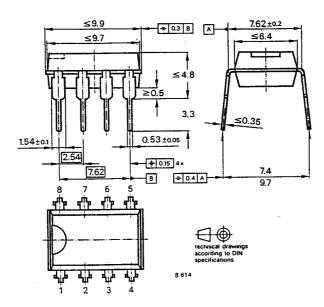
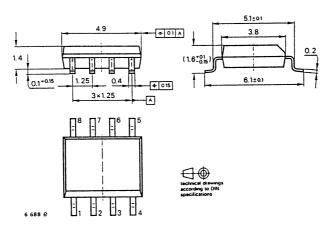
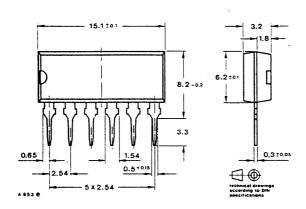

Emitter follower output (U 833 BSE)

Figure 5.



Dimensions in mm


Package: DIP8

Package: SO8

Package: SIP8

U833BS / U833BSE

Ozone Depleting Substances Policy Statement

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423