1.1-GHz Prescaler for TV Tuners

Technology: Bipolar

Features

- Extrem low current consumption (typ. 17 mA)
- Output harmonics strongly reduced
- Scaling factor: 256

- High input sensitivity
- ECL output stage
- Electrostatic protection according to MIL-STD. 883

Case: 6-pin single-inline plastic

Absolute Maximum Ratings

Reference point Pin l, unless otherwise specified

Parameter	Symbol	Value	Unit	
Supply voltage	Pin 4	VS	6	V
Input voltage range	Pins 5 and 6	Vi	0 to V _S	V
Junction temperature		Tj	125	°C
Ambient-temperature range		T _{amb}	-25 to +85	°C
Storage-temperature range		T _{stg}	-40 to +125	°C

Thermal Resistance

Parameters	Symbol	Maximum	Unit	
Junction ambient	R _{thJA}	100	K/W	

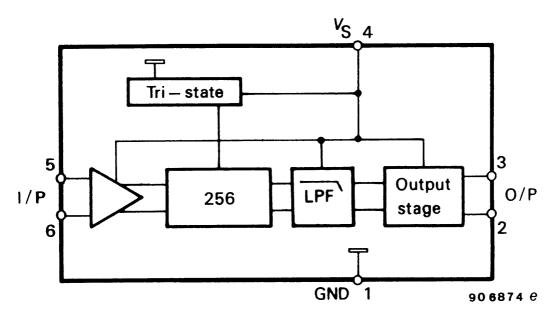


Figure 1. Block diagram

Pin Configuration

Pin	Function		Pin	Function
1	Ground		4	V _S
2, 3	Output		5,6	Input

Electrical Characteristics

Test Conditions / Pin	Symbol	Min	Тур	Max	Unit
Pin 4	Vs	4.5		5.5	V
$V_S = 5 V$ Pin 4	IS		17	21	mA
$R_G = 50 \Omega$					
f _i = 70 to 1000 MHz Pin 5, 6	vi			10	mV
$f_i = 1000 \text{ to } 1100 \text{ MHz}$ Pin 5, 6	vi			15	mV
$f_i = 1100 \text{ to } 1200 \text{ MHz}$ Pin 5, 6	vi			40	mV
$R_G = 50 \Omega$ Pin 5, 6	Vi	300			mV
	f _{imin}			70	MHz
	f _{imax}	1200			MHz
$f_i \le 1000 \text{ MHz}$					
$C_L = 13 \text{ pF. SF} = 1:256$ Pin 2, 3	Vo	0.6		1.2	V _{pp}
Pin 2, 3	Z ₀		500		Ω
	$\label{eq:result} \begin{array}{c} Pin \ 4 \\ V_S = 5 \ V & Pin \ 4 \\ R_G = 50 \ \Omega \\ f_i = 70 \ to \ 1000 \ MHz \\ Pin \ 5, \ 6 \\ f_i = 1000 \ to \ 1100 \ MHz \\ Pin \ 5, \ 6 \\ f_i = 1100 \ to \ 1200 \ MHz \\ Pin \ 5, \ 6 \\ R_G = 50 \ \Omega & Pin \ 5, \ 6 \\ \hline \end{array}$	$\begin{tabular}{ c c c c c } \hline Pin 4 & V_S \\ \hline V_S = 5 \ V & Pin 4 & I_S \\ \hline R_G = 50 \ \Omega & & & \\ \hline f_i = 70 \ to \ 1000 \ MHz & & & \\ \hline Pin \ 5, \ 6 & V_i & & \\ \hline f_i = 1000 \ to \ 1100 \ MHz & & & \\ \hline Pin \ 5, \ 6 & V_i & & \\ \hline f_i = 1100 \ to \ 1200 \ MHz & & & \\ \hline Pin \ 5, \ 6 & V_i & & \\ \hline R_G = 50 \ \Omega & Pin \ 5, \ 6 & V_i & & \\ \hline R_G = 50 \ \Omega & Pin \ 5, \ 6 & V_i & & \\ \hline f_{imin} & & & f_{imax} & & \\ \hline \hline f_i \leq 1000 \ MHz & & & \\ \hline C_L = 13 \ pF. \ SF = 1:256 & & \\ \hline Pin \ 2, \ 3 & V_O & & \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline Pin 4 & V_S & 4.5 \\ \hline V_S = 5 V & Pin 4 & I_S \\ \hline R_G = 50 \ \Omega & & & \\ \hline f_i = 70 \ to \ 1000 \ MHz & & & \\ \hline Pin 5, 6 & V_i & & \\ \hline f_i = 1000 \ to \ 1100 \ MHz & & & \\ \hline Pin 5, 6 & V_i & & \\ \hline f_i = 1100 \ to \ 1200 \ MHz & & & \\ \hline Pin 5, 6 & V_i & & \\ \hline R_G = 50 \ \Omega & Pin 5, 6 & V_i & & \\ \hline R_G = 50 \ \Omega & Pin 5, 6 & V_i & & \\ \hline f_{imin} & & & \\ \hline f_{imax} & & 1200 \\ \hline \hline f_i \leq 1000 \ MHz & & & \\ \hline C_L = 13 \ pF. \ SF = 1:256 & & \\ \hline Pin 2, 3 & V_O & 0.6 \\ \hline \end{tabular}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

1) RMS voltage calculated from the available power measured

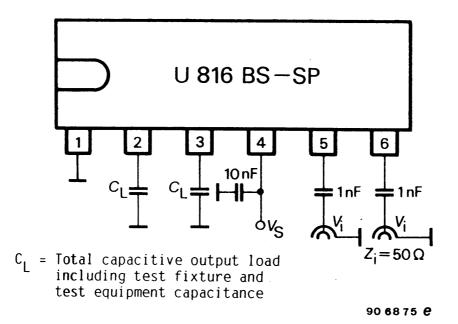


Figure 2. Test circuit

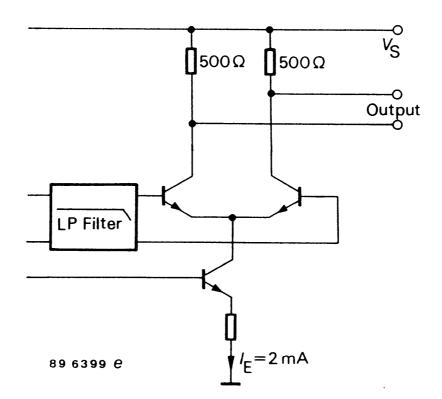


Figure 3. Output circuit (ECL output)

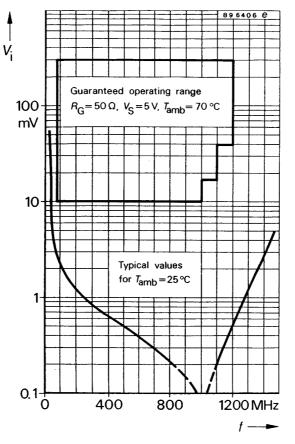
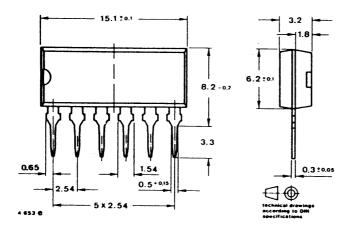



Figure 4. Input sensitivity

Dimensions in mm

Package: SIP6

Ozone Depleting Substances Policy Statement

It is the policy of **TEMIC TELEFUNKEN microelectronic GmbH** to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423