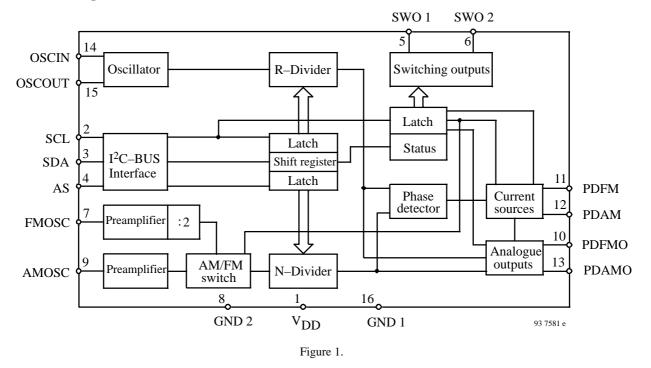
1 (9)

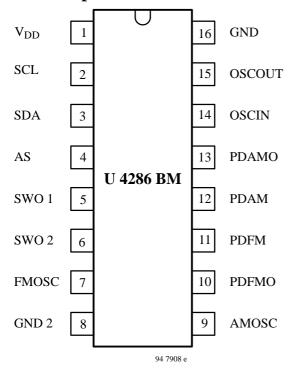
AM / FM-PLL

Description

The U4286BM is an integrated circuit in BICMOS technology for frequency synthesizer. It performs all the functions of a PLL radio tuning system and is controlled by I²C bus. The device is designed for all frequency


synthesizer applications of radio receivers, as well as RDS (Radio Data System) applications.

Features


- Reference oscillator up to 15 MHz
- Two programmable 16 bit dividers adjustable from 2 to 65535
- Fine tuning steps: $AM \ge 1 \text{ kHz}$ $FM \ge 2 \text{ kHz}$

- Two programmable switching outputs (open drain up to 20 V)
- Few external component requirements due to integrated loop-transistor for AM/FM
- High signal/ noise ratio

Block Diagram

Pin Description

Pin	Symbol	Function
1	V_{DD}	Supply voltage
2	SCL	I ² C bus clock
3	SDA	I ² C bus data
4	AS	Address selection
5	SWO 1	Switching output 1
6	SWO 2	Switching output 2
7	FMOSC	FM oscillator input
8	GND 2	Ground 2 (analog)
9	AMOSC	AM oscillator input
10	PDFMO	FM analogue output
11	PDFM	FM current output
12	PDAM	AM current output
13	PDAMO	AM analogue output
14	OSCIN	Oscillator input
15	OSCOUT	Oscillator output
16	GND 1	Ground 1 (digital)

Functional Description

The U4286BM is controlled via the 2-wire I²C bus. For programming there are one module address byte, two subaddress bytes and five data bytes.

The module address contains a programmable address bit A 1 which with address select input AS (Pin 4) makes it possible to operate two U4286BM-B in one system. If bit A 1 is identical with the status of the address select input AS, the chip is selected .

The subaddress determines which one of the data bytes is transmitted first. If subaddress of R - divider is transmitted, the sequence of the next data bytes is DB 0 (Status), DB 1 and DB 2.

If subaddress of N - divider is transmitted, the sequence of the next data bytes is DB 3 and DB 4. The bit organisation of the module address, subaddress and 5 data bytes are shown in figure 2.

Each transmission on the I^2C bus begins with the "START"- condition and has to be ended by the "STOP"-condition (see figure 3).

The integrated circuit U4286BM has two separate inputs for AM and FM oscillator. Pre-amplified AM signal is directed to the 16 bit N-divider via AM/ FM switch, whereas (pre-amplified) FM signal is first divided by a fixed prescaler (:2). AM/ FM switch is controlled by software. Tuning steps can be selected by 16 bit R-divider. Further there is a digital memory phase detector. There are two separate current sources for AM and FM amplifier (charge pump) as given in electrical characteristics. It allows independent adjustment of gain, whereby providing high current for high speed tuning and low current for stable tuning.

Rev. A1: 19.08.1996

U4286BM

Bit Organisation

MSB							LSB
1	1	0	0	1	0	0/1	0
A7	A6	A5	A4	A3	A2	A1	A0
X	X	X	X	0	1	X	X
X	X	X	X	1	1	X	X
MSB							LSB
X	SWO1	SWO2	X	AM/	PD	PD	PD
				1			CUR
D7	D6	D5	D4	D3	D2	D1	D0
215			R-di	vider			28
27			R-di	vider			20
•							
215	N-divider					28	
2 ⁷ N-divider					20		
	X X X X MSB X D7 2 ¹⁵ 2 ⁷ 2 ¹⁵	1	1 1 0 A7 A6 A5 X X X X X X MSB X SWO1 D7 D6 D5 215 27	1 1 0 0 A7 A6 A5 A4 X X X X X X X X MSB X SWO1 SWO2 X D7 D6 D5 D4 215 R-di 27 R-di 215 N-di	1 1 0 0 1 A7 A6 A5 A4 A3 X X X X X 1 MSB X SWO1 SWO2 X AM/FM FM D7 D6 D5 D4 D3 215 R-divider 27 R-divider 215 N-divider	1 1 0 0 1 0 A7 A6 A5 A4 A3 A2 X X X X X 0 1 X X X X 1 1 MSB X SWO1 SWO2 X AM/PM PD FM ANA D7 D6 D5 D4 D3 D2 215 R-divider 27 R-divider	1 1 0 0 1 0 0/1 A7 A6 A5 A4 A3 A2 A1 X X X X X 1 1 X X X X X X 1 1 X MSB X SWO1 SWO2 X AM/ PD PD PD D7 D6 D5 D4 D3 D2 D1 215 R-divider 27 R-divider

	LOW	HIGH
AM/FM	FM-operation	AM-operation
PD – ANA	PD analogue	TEST
PD – POL	Negative polarity	Positive polarity
PD – CUR	Output current 2	Output current 1

Figure 2.

Transmission protocol

	MSB	LSB											
S	Address		Α	Subaddress	Α	Data 0	Α	Data 1	A	Data 2	Α	P	
	A7	A0		R-divider									

	MSB	LSB								
S	Addre		A	Subaddress	A	Data 3	A	Data 4	A	P
	A7	A0		N-divider				A		

S = Start P = Stop A = Acknowledge

Figure 3.

Absolute Maximum Ratings

Para	ameters	Symbol	Value	Unit
Supply voltage	Pin 1	V_{DD}	-0 to +6	V
Input voltage	Pin 2, 3, 4, 7, 9, 14, 15	V _I	$-0.3 \text{ to V}_{DD} + 0.3$	V
Output current	Pin 3, 5, 6	I _O	-1 to +5	mA
Output drain voltage	Pin 5, 6	V _{OD}	20	V
Output voltage	Pin 10, 13	V_{AO}	15	V
Output current	Pin 10, 13	I _{AO}	-1 to +20	mA
Ambient temperature range		T _{amb}	-25 to +85	°C
Storage temperature range		T_{stg}	-40 to +125	°C
Junction temperature		Tj	125	°C
Electrostatic handling (MIL	Standard 883C)	$\pm V_{ESD}$	2000	V

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient	R_{thJA}	160	K/W

TEMIC

Electrical Characteristics

 $V_{DD} = 5 \text{ V}, T_{amb} = 25^{\circ}\text{C}, \text{ unless otherwise specified}$

Parameters	Test Conditions / Pins	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	Pin 1	V_{DD}	4.5	5.0	5.5	V
Quiescent	Pin 1					
supply current		I_{DD}		6.0	11.6	mA
FM Input Sensitivity, R _G =	50 Ω FMOSC					
$f_i = 70 \text{ to } 120 \text{ MHz}$	Pin 7	V _{SFM}	25			mV
$f_i = 120 \text{ to } 130 \text{ MHz}$	Pin 7	V _{SFM}	50			mV
AM Input Sensitivity, R _G =	50 Ω AMOSC					
$f_i = 0.5$ to 35 MHz	Pin 9	V _{SAM}	25			mV
Oscillator Input Sensitivity,	$R_G = 50 \Omega OSCIN$					
$f_i = 0.1$ to 15 MHz	Pin 14	V _{SOSC}	100			mV
Switching Output SWO 1, S	WO 2 (Open Drain)					
Output voltage	Pin 5, 6					
LOW	$I_L = 1 \text{ mA}$	V _{SWOL}		200	400	mV
LOW	$I_L = 0.1 \text{ mA}$	V _{SWOL}		20	100	mV
Output leakage current HIGH	Pin 5, 6 V5, V6 = 20 V	I			100	nA
Phase Detector PDFM	V 3, V 0 = 20 V	I _{OHL}			100	ША
Output current 1	Pin 11	I T	400	500	600	
Output current 2	Pin 11	$\pm I_{PDFM} \ \pm I_{PDFM}$	100	125	150	μΑ μΑ
Phase Detector PDAM	1 11	<u>+ PDFM</u>	100	120	100	J 642 2
Output current 1	Pin 12		75	100	125	μΑ
Output current 2	Pin 12	$\begin{array}{ c c c } \pm I_{PDAM} \\ \pm I_{PDAM} \end{array}$	20	25	30	μΑ
Analogue Output PDFMO,		+ PDAM				,
Saturation voltage	I = 15 mA					
Bataration voltage	Pin 10, 13	V _{sat}		270	400	mV
Leakage current	Pin 10, 13	I _{LEAK}			1	μΑ
I ² C Bus SCL, SDA, AS	,	LLI III				,
Input voltage	Pin 2, 3, 4	V _{iBUS}				
HIGH		l Bes	3.0		V_{DD}	V
LOW			0		1.5	V
Output voltage	$I_{SDA} = 3 \text{ mA}$ Pin 3					
Acknowledge LOW		V _O			0.4	V
Clock frequency	Pin 2	f _{SCL}			100	kHz
Rise time SDA, SCL	Pin 2, 3	t _r			1	μs
Fall time SDA, SCL	Pin 2, 3	t_{f}			300	ns
Period of SCL	Pin 2		4.0			
HIGH		t _H	4.0			μs
LOW		t _L	4.7	İ		μs

Parameters	Test Conditions / Pins	Symbol	Min.	Тур.	Max.	Unit
Setup Time						
Start condition Data Stop condition Time the bus must be free before a new transmission can be started		$t_{\rm sSTA}$ $t_{\rm sDAT}$ $t_{\rm sSTOP}$ $t_{\rm wSTA}$	4.7 250 4.7 4.7			μs ns μs μs
Hold time						
Start condition DATA		t _{hSTA} t _{hDAT}	4.0 0			μs μs

Bus Timing

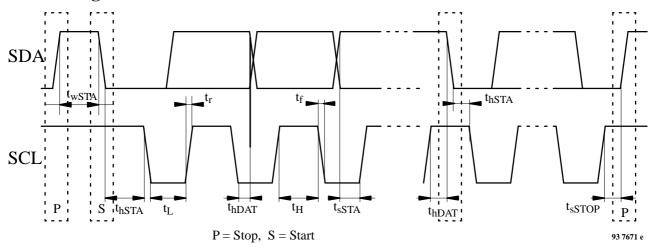


Figure 4.

The Following Hints are Recommended:

- $C_3 = 100 \text{ nF}$ should be very close to Pin 1 (V_{DD}) and Pin 16 (GND 1)
- GND 2 (Pin 8 analog ground) and GND 1 (Pin 16 digital ground) must be connected according to Figure 6
- 4 MHz quartz must be very close to Pin 14 and Pin 15
- Components of the charge pump (C₁/R₁ for AM and C₂/R₂ for FM) should be very close to Pin 12 with respect to Pin 11.

7 (9)

Application Circuit

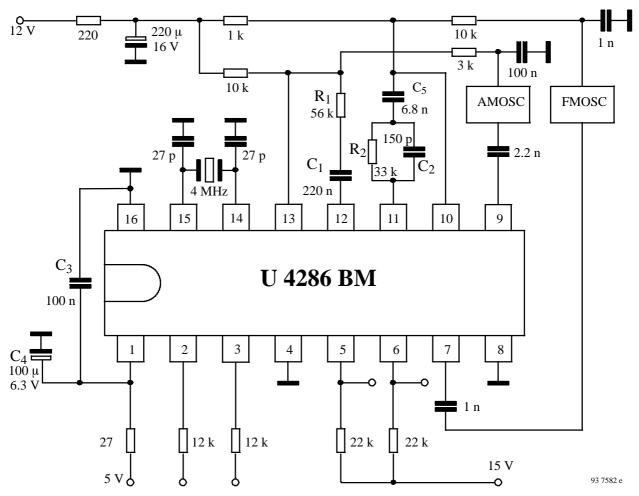
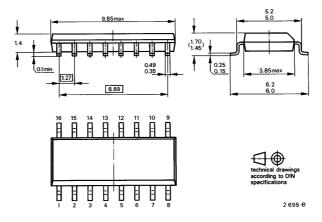


Figure 5.

PCB-Layout



Ordering and Package Information

Extended Type Number	Package	Remarks
U4286BM-BFP	SO16 plastic	
U4286BM-BFPG3	SO16 plastic	Taping according to IEC-286-3

Dimensions in mm

Package: SO16

TELEFUNKEN Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements.
- Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423