Universal Telephone IC - All Functions Integrated

Description

Atmel Wireless \& Microcontrollers' low-voltage telephone circuit U3761MB-T performs all the speech and line interface functions required in an electronic telephone set, the tone ringer, the pulse and DTMF dialing with redial, notice function, and 13 memories. Operation below 15 mA is possible with reduced performance.

Features

Speech Circuit

- Adjustable DC characteristic
- Symmetrical input of microphone amplifier
- Receiving amplifier for dynamic or piezo-electric earpieces
- Automatic line-loss compensation

Dialer

- DTMF / pulse switchable
- Pulse dialing $66 / 33$ or $60 / 40$ or DTMF dialing selectable by pin
- Selectable flashing duration by key pad
- Pause function
- Optical indication of temporary DTMF mode
- Keytone for pulse dialing
- Last number redial up to 32 digits
- Three by 17 digits direct (one-touch) memory

Electrostatic sensitive device. Observe precautions for handling

- Ten by 17 digits indirect (two-touch) memory
- Notice function up to 32 digits
- Standard low-cost crystal 3.58 MHz or ceramic resonator
- Handset Mute (Privacy) with optical indication
- Additional toggle flipflop
- Internal loop interrupt detection

Tone Ringer

- 2-tone ringer
- Adjustable volume
- RC oscillator
- Adjustable threshold

Benefits

- Low number of external components
- High quality through one IC solution

Ordering Information

Extended Type Number	Package	Remarks
U3761MB-TFN	SSO44	Tube
U3761MB-TFNG3	SSO44	Taped and reeled

Block Diagram / Applications

Figure 1. Block diagram / applications

Pin Description

Figure 2. Pinning SSO44

Pin	Symbol	Function	Configuration
11	$\overline{\text { MFIND }}$	Output switches to low being in temporary DTMF mode. Reset by on hook condition. Maximum voltage at MFIND $=5.5 \mathrm{~V}$.	
12	GND	Ground	
13 14	MIC 1 MIC 2	Inverting input of microphone amplifier Non-inverting input of microphone amplifier	
15	MICO	Transmit pre-amp output which is normally capacitively coupled to Pin TIN	
16	VL	Positive supply voltage input to the device. The current through this pin is modulated by the transmit signal.	
17	RDC	An external resistor (1 W) is required from this pin to GND to control the DC input impedance of the circuit. It has a nominal value of 39Ω for low-voltage operation. Values up to 100Ω may be used to increase the available transmit output voltage swing at the expense of low-voltage operation.	
18	TIN	Input to the line output driver amplifier. Transmit AGC applied to this stage.	

Pin	Symbol	Function	Configuration
19	V_{I}	This internal voltage bias line must be connected to VL via an external resistor which dominates the AC input impedance of the circuit and should be 680Ω for an $600-\Omega$ input impedance or $1.2 \mathrm{k} \Omega$ for a $900-\Omega$ input impedance.	
20	$\overline{\text { MUTE }}$	Pin for testing Forcing MUTE to GND mutes the microphone and decreases the earpiece signal by typically 29 dB ; no pull up circuit allowed.	
21	$\overline{\text { PRIND }}$	PRIVACY indication pin Open collector with minimum 1 mA drive current to GND when PRIVACY = active	
22	RECIN	Receive amplifier input. The receiving amplification is regulated by an AGC.	
23 24		Output of the receive amplifier. Dynamic transducers with a minimum impedance of 100Ω can be directly driven by these outputs.	
25	CLIM	Time constant of anticlipping in transmit path. CLIM $\geq 2.2 \mu \mathrm{~F}$ CLIM $=$ GND: anticlipping inactive	
26	ST	The output of the sidetone cancellation signal, which requires a balanced impedance of 8 to 10 times the subscribers line impedance to be connected to Pin VL.	
27	THA	Ringer threshold adjustment	
28	AGC	The range of transmit and receive gain variations between short and long loops may be adjusted by connecting a resistor $\mathrm{R}_{\text {AGC }}$ from this pin to (GND). This pin can be left open to set AGC out of action.	

Pin	Symbol	Function	Configuration
29	VRIAC	Ringing supply	
30	VRING	DC supply voltage for the tone ringer is limited to 30 V with integrated Z-diode.	
31	RCK	RC clock oscillator for ringer	
32	OUT	Buzzer output	
33	VDD	Supply output for dialer part	
34	Test	Test input with $6.25 \mathrm{k} \Omega$ pull-up resistor	
35	n.c.	Not connected	
36	HKS	Hook switch input. HKS $=0$: On-hook state. Chip in sleep mode, no operation (external pull-down resistor recommended). HKS = 1: Off-hook state. Chip enable for normal operation. $\mathrm{I}_{\mathrm{HKS}} \leq 0.5 \mathrm{~mA}$	

Keyboard Operation

C1
C2
F1

- S: Store function key
- A: Indirect repertory dialing function key (LN 0 to 9)
- R/P: Redial and pause function key
- */T: * function;
pulse-to-tone function
- M1 to M3: One-touch memory
- F1, F2, F3: Flash keys
- N : Notice function

Normal Dialing

OFF HOOK , D1 , D2 , ... Dn

1. D1, D2, ..., Dn will be dialed out.
2. Dialing length is unlimited, but redial is inhibited if length oversteps 32 digits.
3. If redialing length oversteps 32 digits, the redialing function will be inhibited.

Redialing

OFF HOOK , D1 , D2 , .., Dn BUSY, Come ON HOOK , OFF HOOK , R/P
The R / P key can execute the redial function only as the first key-in after off-hook; otherwise, it executes the pause function (3.6 s).

Characters F1, F2, F3, Earth, (* in pulse mode) can only be stored in Mn, Ln and N memory.
Characters F1, F2, F3, Earth, (* in pulse mode) will not be dialled out from redial-memory; dialling out was stopped, when recognizing one of the above characters.

Example:

OFF/ HOOK , D1, D2, F1, D4, D5, S, S, M1
a) ON/OFF-HOOK, R/P
only D1, D2 will be dialed out, then dialing out stops
b) ON/OFF-HOOK, M1
D1, D2, F1, D4, D5 will be dialed out

Content of redial memory can be copied to $\mathrm{Mn}, \mathrm{Ln}, \mathrm{N}$; but copying memory $\mathrm{Mn}, \mathrm{Ln}, \mathrm{N}$ to itself or to another memory (ecxept redial memory) will erase the destinated memory.

Example:
OFF/ HOOK, D1, D2, ... Dn
a) ON/OFF-HOOK, R/P, N .
b) ON/OFF-HOOK, R/P, S, S, Mn (or Ln)
D1, ... Dn copied to N
D1, ... Dn copied to Mn (or Ln)
but
OFF/ HOOK, M1
a) ON/OFF-HOOK, R/P, S, S, M2
b) ON/OFF-HOOK, M1, S, S, M2
content of M1 will be dialed out
not possible, M2 will be erased
not possible, M2 will be erased

Number Store

OFF HOOK , D1 , D2 , .., Dn , S , S , Mn (or Ln)

1. D1, D2, ..., Dn will be stored in memory location only (not in redial memory) and dialed out.

OFF HOOK , S , D1 , D2 , .., Dn , S , Mn (or Ln)
2. D1, D2, ..., Dn will be stored in memory location but will not be dialed out.
3. R / P and $* / \mathrm{T}$ keys can be stored as a digit in memory, also F1, F2, F3, Earth.

In store mode, R / P is the pause function key; $* / \mathrm{T}$ is the pulse-to-tone function key.
4. The store mode is released after the store function is executed or when the state of the hook switch is changed.

5 Number store can be linked without going ON/OFF-Hook

Example:

OFF/HOOK

> S, D1, D2, ... Dn, S, M1
> S, D1', D2', ... Dn', S, M2 ...
storing D1, D2, ... Dn to M1
storing D1', D2, ... Dn' to M2

Repertory Dialing

1. OFF HOOK , Mn
2. OFF HOOK , A , Ln

Notice (N)

OFF HOOK , D1 , D2 , ..., Dn , N

1. If the dialing of D 1 to \square Dn is finished, pressing the N key will cause D 1 to Dn to be copied to the N memory.
2. Pressing key N again, after D1, D2, ... Dn was copied to N, N will be dialed out again

OFF HOOK N
3. D1 to Dn will be dialed out after the N key is pressed.
4. Notice function is valid as first key only.

Cascaded Dialing

1. Normal dialing + Repertory dialing + Normal dialing
2. Repertory dialing + Normal dialing + Normal dialing
3. Redialing + Normal dialing + Repertory dialing
4. Redialing is valid as first key-in only.

Figure 3. Pulse mode normal dialing

Figure 4. Pulse mode auto dialing

U3761MB-T

Figure 5. Pulse mode auto dialing

Figure 6. DTMF mode normal dialing

Figure 7. DTMF mode auto dialing ($\mathrm{t}<\mathrm{t}_{\mathrm{OHD}}$)

Figure 8. DTMF mode auto dialing ($\mathrm{t}>\mathrm{t}_{\mathrm{OHD}}$)

Access Pause

OFF HOOK , D1 , D2 , R/P , D3 , .., Dn'

1. The pause function can be stored in the memory.
2. The pause function is executed in normal dialing and redialing.

Figure 9. Pause function

U3761MB-T

Pulse-to-Tone (*/T)

OFF HOOK , D1 , D2 , .., Dn , */T , D1’, D2’, ,., Dn’

1. If the mode switch is set to pulse mode, then the output signal will be:

D1, D2, ..., Dn, Pause (3.6 s), D1', D2', ,.., Dn'
(Pulse)
(Tone)
2. If the mode switch is set to tone mode, then the output signal will be:

$\mathrm{D} 1, \mathrm{D} 2, \ldots, \mathrm{Dn}$,	$*$	$, \mathrm{D} 1 ’, \mathrm{D} 2 ’, \ldots, \mathrm{Dn}$
(Tone)	(Tone)	(Tone)

3. The dialer remains in tone mode when the digits have been dialed out and can be reset to pulse mode by going on-hook only.
4. ON/OFF-HOOK, R/P D1, D2, ... Dn dialed out, then further dialing out stops and remains in pulse mode, when dialling from redial memory.
5. If characters are stored in Mn, Ln or N , dialing out be the same in pulse mode as point 1 .

Figure 10. Pulse-to-tone operation

Flash (F1 or F2 or F3)

OFF HOOK , F_{n}

1. The dialer will execute flash break and the entire flash pause time will elapse before the next digits are dialed out.
2. The flash key can be stored as a digit in the memory. Only one flash, however, will be released to the users.
3. The system will return to the initial state after the flash pause time has elapsed.

Figure 11. Flash operation
$\mathrm{t}_{\mathrm{KID}}=$ key active in debounce
$\mathrm{t}_{\mathrm{KRD}}=$ key release debounce
$\mathrm{t}_{\mathrm{PDP}}=$ pre-digit pause
$\mathrm{t}_{\mathrm{IDP}}=$ inter-digit pause
$\mathrm{t}_{\mathrm{TD}}=$ DTMF output duration

$$
\begin{array}{ll}
\mathrm{t}_{\mathrm{ITP}} & =\text { intertone pause } \\
\mathrm{t}_{\mathrm{FB}} & =\text { flash break time } \\
\mathrm{t}_{\mathrm{FP}} & =\text { flash pause time } \\
\mathrm{t}_{\mathrm{P}} & =\text { pause time }
\end{array}
$$

$$
\mathrm{t}_{\mathrm{TD}}=\mathrm{DTMF} \text { output duration }
$$

Figure 12. Symbolic timing diagram: Earth function

Figure 13. Symbolic timing diagram: HFI, HFO function

Figure 14. Symbolic timing diagram: on hook debounce time

Figure 15. HKS threshold voltage

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Line current	I_{L}	140	mA
DC line voltage	V_{L}	14	V
DC voltage at Pins 1 to 11 and 33 to 44	V_{DC}	5.5	V
Junction temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-25 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Total power dissipation, $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$	SSO 44	$\mathrm{P}_{\text {tot }}$	0.9
Junction ambient	$\mathrm{R}_{\text {thJA }}$	70	W

ESD withstand voltage 1 kV according to ESD standard S5.1 (HBM)

Electrical Characteristics: Speech Circuit
Reference point Pin GND, $\mathrm{f}=1000 \mathrm{~Hz}, 0 \mathrm{dBm}=775 \mathrm{mV}$ rms, $\mathrm{R}_{\mathrm{DC}}=39 \Omega / 1 \mathrm{~W}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified, refer to "Basic Test Circuit". CLIM = GND

Parameters	Test Conditions / Pin	Symbol	Min.	Typ.	Max.	Unit
Line voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=73 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA} \end{aligned}$	V_{L}	$\begin{aligned} & 3.6 \\ & 5.9 \\ & 6.9 \end{aligned}$	$\begin{gathered} 1.4 \\ 3.85 \\ 6.55 \end{gathered}$	$\begin{aligned} & 4.1 \\ & 7.2 \\ & 8.2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Transmit and sidetone						
Input resistance	R_{i}	R_{i}	45	80	120	$\mathrm{k} \Omega$
Gain	$\mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \mathrm{~S} 5=$ open	$\mathrm{G}_{\text {s }}$	46.8	47.8	48.8	dB
Gain change with current	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=20 \text { to } 60 \mathrm{~mA} \\ & \mathrm{R}_{\text {AGC }}=\text { infinite } \end{aligned}$	$\Delta \mathrm{G}_{\mathrm{S}}$	-0.5		0.5	dB
Gain deviation	$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=-10 \text { to }+60^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA} \end{aligned}$	$\Delta \mathrm{G}_{\mathrm{S}}$	-0.5		0.5	dB
Line-loss compensation	$\mathrm{R}_{\mathrm{AGC}}=12 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=73 \mathrm{~mA}$	$\Delta \mathrm{G}_{\text {s }}$	-7	-6	-4.8	dB
Distortion at line $\mathrm{V}_{\mathrm{L}}=0.775 \mathrm{~V}_{\mathrm{rms}}$	$\mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \mathrm{~S} 5=$ open	d_{t}			2	\%
Max. output voltage at line $d \leqq 5 \%$	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \mathrm{~V}_{\text {mic }}=10 \mathrm{mV}, \\ & \text { CLIM }=2.2 \mu \mathrm{~F}, \mathrm{~S}_{1}=\text { open } \end{aligned}$	$\mathrm{V}_{\text {Lmax }}$		1.2		dBm
Attack time transmit anticlipping	CLIM $=2.2 \mu \mathrm{~F}$	$\mathrm{t}_{\text {att }}$		3.5		ms
Noise at line weighted psophometrically	$\mathrm{I}_{\mathrm{L}}>20 \mathrm{~mA}, \mathrm{G}_{\mathrm{S}}=48 \mathrm{~dB}$	n_{0}			-72	dBmp
Sidetone reduction	$\mathrm{I}_{\mathrm{L}} \geqq 20 \mathrm{~mA}$	GSTA	10	15	20	dB
DTMF amplifier						
Volume range $\mathrm{d}<5 \%$	Single tone, $\mathrm{I}_{\mathrm{L}} \geq 20 \mathrm{~mA}$	V_{L}	1.3			dBm
DTMF output level low frequency group	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \mathrm{~S} 5=\text { closed } \\ & \mathrm{T}_{\mathrm{amb}}=-5^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \end{aligned}$	V_{L}	-7.6		-4.6	dBm
Pre-emphasis between high- and low-level frequency group	$\begin{aligned} & \mathrm{P}_{\mathrm{PRE}}=\mathrm{P}_{\mathrm{HLG}}-\mathrm{P}_{\mathrm{LLG}}, \\ & \mathrm{~S} 5=\text { closed, } \\ & \mathrm{T}_{\mathrm{amb}}=-5^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{P}_{\text {PRE }}$	1.9	2.5	3.1	dB
Total harmonic distortion relative to sum level of low and high frequency group signal	$\mathrm{IL} \geq 20 \mathrm{~mA}$, measured at Pin MFO	THD		-33	-25	dBr
Receiving amplifier						
Gain	$\mathrm{I}_{\mathrm{L}} \geq 20 \mathrm{~mA}$	G_{R}	3		5	dB
Gain change with current	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=20 \text { to } 60 \mathrm{~mA} \\ & \mathrm{R}_{\text {AGC }}=\text { infinite } \end{aligned}$	$\Delta \mathrm{G}_{\mathrm{R}}$	-0.5		0.5	dB
Gain deviation	$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=-10 \text { to }+60^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA} \end{aligned}$	$\Delta \mathrm{G}_{\mathrm{R}}$	-0.3		0.7	dB
Line-loss compensation	$\mathrm{I}_{\mathrm{L}}=73 \mathrm{~mA}$	$\Delta \mathrm{G}_{\mathrm{R}}$	-7	-6	-4.7	dB

Electrical Characteristics: Speech Circuit (continued)

Parameters	Test Conditions / Pin	Symbol	Min.	Typ.	Max.	Unit
Receiving noise at earphone weighted psophometrially	$\mathrm{I}_{\mathrm{L}}=73 \mathrm{~mA}$	n_{i}		-77.5	-71	dBm
Gain change when muted	$\mathrm{I}_{\mathrm{L}} \geqq 20 \mathrm{~mA}$	G_{RM}	24	29	34	dB
Output voltage push-pull	$\begin{aligned} & \mathrm{I}_{\mathrm{L}} \geqq 20 \mathrm{~mA}, \mathrm{Z}_{\text {ear }}=68 \mathrm{nF}, \\ & 100 \Omega \text { in series, } \mathrm{d} \leq 2 \% \end{aligned}$	$\mathrm{V}_{\text {RECO }}$	0.8	0.9		$\mathrm{V}_{\text {rms }}$
Ear protection differential	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=40 \mathrm{~mA}, \mathrm{~V}_{\mathrm{gen}}=4 \mathrm{~V}_{\mathrm{rms}} \\ & \mathrm{Z}_{\text {ear }}=68 \mathrm{nF}+100 \Omega \end{aligned}$	$\mathrm{V}_{\text {ear }}$	1.3	1.6	2.5	$\mathrm{V}_{\text {rms }}$
Supply voltage (for internal use only)						
Output voltage Note: Output must be limited externally to max. 5.5 V	$\mathrm{I}_{\mathrm{L}} \geqq 20 \mathrm{~mA}$ dialing mode	V_{DD}	2.0		6.3	V
Available current for peripherals	$\mathrm{I}_{\mathrm{L}} \geqq 20 \mathrm{~mA}$ dialing mode	I_{DD}	150			$\mu \mathrm{A}$
Transmit						
Maximum output voltage swing at line	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{MIC}}=50 \mathrm{mV}_{\mathrm{rms}} \end{aligned}$	$\mathrm{V}_{\mathrm{L} \text { max }}$		3.4	4	Vpp
Mute suppression transmit with privacy function	$\mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}$	GSPRIV	60			dB

DC Characteristics Dialer

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=3.58 \mathrm{MHz}$, all outputs unloaded, S 9 closed; $\mathrm{HKS}=1$

Parameter	Test Conditions / Pins	Symbol	Min.	Typ.	Max.	Unit
Memory retention current	$\mathrm{HKS}=0, \mathrm{~V}_{\mathrm{DD}}=1.0 \mathrm{~V}$	I_{MR}			0.1	$\mu \mathrm{~A}$
Data retention voltage				0.5		V
DTMF distortion	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	d		-30	-23	dB
DP output sink current	$\mathrm{V}_{\mathrm{PO}}=0.5 \mathrm{~V}$	I_{PL}	0.5			mA
Keyboard input drive current	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$	I_{KD}		20		$\mu \mathrm{~A}$
Keyboard input sink current	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$	I_{KS}		500		$\mu \mathrm{~A}$
Key on resistance	$\mathrm{R}_{\mathrm{KON}}$			5	$\mathrm{k} \Omega$	
Key off resistance	$\mathrm{R}_{\mathrm{KOFF}}$	100			$\mathrm{k} \Omega$	
Mask sink / drive current		$\mathrm{I}_{\mathrm{M}} \mathrm{H} / \mathrm{L}$	0.5			mA
Earth sink / drive current		$\mathrm{I}_{\mathrm{e}} \mathrm{H} / \mathrm{L}$	0.5			mA
Isolation resistance XT/XT		Riso	4.7			$\mathrm{M} \Omega$
Maximum voltage at HKS					5.5	V
Maximum input current at HKS					0.5	mA

AC Characteristics Dialer

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=3.58 \mathrm{MHz}$, all outputs unloaded, S 9 closed; $\mathrm{HKS}=1$

Parameter	Test Conditions / Pins	Symbol	Min.	Typ.	Max.	Unit
Keypad active in debounce mode		$\mathrm{t}_{\text {KID }}$	15	20	25	ms
Key release debounce		$\mathrm{t}_{\text {KRD }}$	15	20	25	ms
Pre-digit pause	$\begin{aligned} & \text { MODE pin }=\mathrm{R} 3(10 \mathrm{pps}) \\ & \text { MODE pin }=\mathrm{C} 1, \mathrm{C} 4(10 \mathrm{pps}) \end{aligned}$	$t_{\text {PDP }}$ tPDP	$\begin{aligned} & 37 \\ & 31 \end{aligned}$	$\begin{gathered} 40 \\ 33.3 \end{gathered}$	$\begin{gathered} 41 \\ 33.5 \end{gathered}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$
	$\begin{aligned} & \text { MODE pin }=\mathrm{R} 1(20 \mathrm{pps}) \\ & \text { MODE pin }=\text { R2 } \end{aligned}$	tpDP tpDP		$\begin{gathered} 20 \\ 16.65 \end{gathered}$		$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$
Inter-digit pause (auto dialing)	$\begin{aligned} & 10 \mathrm{pps}, \mathrm{t}_{\mathrm{IP}}=\mathrm{t}_{\mathrm{IDP}}+\mathrm{t}_{\mathrm{PDP}} \\ & 20 \mathrm{pps} \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{IP}} \\ & \mathrm{t}_{\mathrm{IP}} \end{aligned}$	810	$\begin{aligned} & 836 \\ & 512 \end{aligned}$	860	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$
Make/break ratio	$\begin{aligned} & \text { MODE pin }=\mathrm{R} 1(20 \mathrm{pps}), \mathrm{R} 3 \\ & (10 \mathrm{pps}) \\ & \text { MODE pin }=\mathrm{C} 1, \mathrm{R} 4(10 \mathrm{pps}) \\ & \text { R2 }(20 \mathrm{pps}) \end{aligned}$	M/B	$\begin{gathered} 40.8: 60 . \\ 2 \\ 35.6: 64 . \\ 4 \end{gathered}$	$\begin{aligned} & 40: 60 \\ & 33: 67 \end{aligned}$	$\begin{gathered} 39.2: 60 . \\ 8 \\ 31.2: 68 \\ 8 \end{gathered}$	$\%$ $\%$
DTMF output duration	Auto dialing, $\mathrm{MODE}=\mathrm{C} 4$ $\mathrm{MODE}=\mathrm{C} 3$	$\mathrm{t}_{\text {TD }}$	$\begin{aligned} & 84 \\ & 84 \end{aligned}$	$\begin{aligned} & 87 \\ & 87 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	ms
Inter-tone pause	Auto dialing, MODE $=\mathrm{C} 4$ $\mathrm{MODE}=\mathrm{C} 3$	$\mathrm{t}_{\text {ITP }}$	$\begin{gathered} 84 \\ 135 \end{gathered}$	$\begin{gathered} 87 \\ 140 \end{gathered}$	$\begin{gathered} 90 \\ 147 \end{gathered}$	ms
Flash break time F1 F2 F3	C_{1} connected to GND C_{2} connected to GND C_{3} connected to GND	$\mathrm{t}_{\text {FB }}$	$\begin{gathered} 95 \\ 245 \\ 590 \end{gathered}$	$\begin{gathered} 98 \\ 250 \\ 604 \end{gathered}$	$\begin{aligned} & 101 \\ & 255 \\ & 610 \end{aligned}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \\ & \mathrm{~ms} \end{aligned}$
Rise time of leading edge at HKS	20 to 70\% of VDD	$\mathrm{t}_{\mathrm{r} H K S}$			10	ms
Flash pause time	F1, F2, F3	t_{FP}	0.9	1	1.1	s
Pause time		t_{p}	3.5	3.6	3.7	S
On-hook debounce time		$\mathrm{t}_{\text {ohd }}$	145	165	185	ms
Earth time	C_{4} connected to GND	t_{t}		604		ms
Earth pause time		t_{pt}	0.9	1	1.1	s
Break duration	$\begin{aligned} & \text { MODE pin }=\mathrm{R} 3 \\ & \text { MODE pin }=\mathrm{C} 1, \mathrm{R} 4 \end{aligned}$	t_{B}	$\begin{gathered} 57.6 \\ 63 \end{gathered}$	$\begin{gathered} 60 \\ 66.7 \end{gathered}$	$\begin{gathered} 62.4 \\ 69 \end{gathered}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$
	$\begin{aligned} & \text { MODE pin }=\text { R1 }(20 \mathrm{pps}) \\ & \text { MODE pin }=\text { R2 } \end{aligned}$	t_{B}		$\begin{gathered} 30 \\ 33.35 \end{gathered}$		ms ms
Make duration	$\begin{aligned} & \text { MODE pin }=\mathrm{R} 3 \\ & \text { MODE pin }=\mathrm{C} 1, \mathrm{R} 4 \end{aligned}$	t_{M}	$\begin{aligned} & 38 \\ & 31 \end{aligned}$	$\begin{gathered} 40 \\ 33.3 \end{gathered}$	$\begin{aligned} & 41 \\ & 35 \end{aligned}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$
	$\begin{aligned} & \text { MODE pin }=\mathrm{R} 1(20 \mathrm{pps}) \\ & \text { MODE pin }=\text { R2 } \end{aligned}$	t_{M}		$\begin{gathered} 20 \\ 16.65 \end{gathered}$		ms ms
Break + make duration	MODE pin $=\mathrm{C} 1, \mathrm{R} 3, \mathrm{R} 4$	t_{p}	95	100	105	ms
	MODE pin $=$ R1, R2 (20 pps)	t_{P}		50		ms

Electrical Characteristics Tone Ringer
$\mathrm{f}_{\mathrm{RCK}}=4 \mathrm{kHz}, \mathrm{V}_{\mathrm{RING}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, reference point GND, unless otherwise specified

Parameter	Test Conditions / Pins	Symbol	Min.	Typ.	Max.	Unit
Supply current, outputs open	$\mathrm{V}_{\text {RIAC }}=20 \mathrm{~V}$	IRING	2.1		3.8	mA
Switch-on threshold	$\mathrm{V}_{\text {RIAC }}, \mathrm{THA}=$ open	$\mathrm{V}_{\text {RON }}$	8	9	10	V
Switch-off threshold	$\mathrm{V}_{\text {RIAC }}$	VRoff	5.0	5.6	6.5	V
Ringing frequency	$\begin{aligned} & \mathrm{R}=150 \mathrm{k} \Omega \mathrm{C}=1 \mathrm{nF} \\ & \mathrm{~V}_{\mathrm{RIAC}}>\mathrm{V}_{\mathrm{RON}} \end{aligned}$	$\begin{aligned} & \mathrm{f}_{1 \mathrm{H}} \\ & \mathrm{f}_{1 \mathrm{~L}} \end{aligned}$	$\begin{aligned} & 937 \\ & 752 \end{aligned}$	$\begin{gathered} 1010 \\ 808 \end{gathered}$	$\begin{gathered} 1083 \\ 868 \end{gathered}$	$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
Range of external compo-		C	1000		2200	pF
Range of external compo-		R	50		330	$\mathrm{k} \Omega$
Audio sequence frequency		f_{2}	11.5	12.5	14.0	Hz
Output voltage swing	$\mathrm{V}_{\text {Ring }}=25 \mathrm{~V}, \mathrm{C}_{\text {out }}=68 \mathrm{nF}$	$\mathrm{V}_{\text {out }}$	21	23		V_{pp}
Turn-off delay	See figure 15	$\mathrm{t}_{\text {off }}$		65	100	ms

Remark: Max. current into internal Zener Diode at Pin VRING $=20 \mathrm{~mA}$

Figure 16. Turn-off delay time

Note

The oscillator frequency is defined by R and C at Pin RCK.

$$
\mathrm{f}_{\mathrm{osc}} \approx \frac{1}{1.594 \times \mathrm{C} \times[\mathrm{R}+3809 \Omega]}
$$

The audio sequence frequency f_{2} and the ratio of low frequency $f_{1 L}$ and high frequency $f_{1 H}$ are derived from
oscillator frequency by internal deviders. So $f_{2}, f_{1 H}$ and $f_{1 L}$ are given by:

$$
\mathrm{f}_{2}=\frac{\mathrm{f}_{\mathrm{Osc}}}{320} \quad ; \mathrm{f}_{1 \mathrm{H}}=\frac{\mathrm{f}_{\mathrm{Osc}}}{4} \quad ; \mathrm{f}_{1 \mathrm{~L}}=\frac{\mathrm{f}_{\mathrm{Osc}}}{5}
$$

For more information of adjusting ringer melody see document "Application and Adjustment Hints"

U3761MB-T
Basic Test Circuit

Figure 17. Basic test circuit

Equations for Electrical Characteristic Parameters of the Speech Circuit
The equations refer to the basic test circuit. If not otherwise specified, the switches in the basic test circuit are inactive.

Transmit gain

$\mathrm{GS}=20 \times \log \left(\frac{\mathrm{V}_{\mathrm{L}}}{\mathrm{V}_{\mathrm{MIC}}}\right)$
$\mathrm{V}_{\mathrm{MIC}}=3 \mathrm{mV} / 1 \mathrm{kHz}, \mathrm{S} 5=$ open

Line-loss compensation transmit

$\Delta \mathrm{GS}=\mathrm{GS}\left(\right.$ at $\left.\mathrm{I}_{\mathrm{L}}=73 \mathrm{~mA}\right)-\mathrm{GS}\left(\right.$ at $\left.\mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}\right)$
TX-mode: $\mathrm{V}_{\mathrm{MIC}}=3 \mathrm{mV} / 1 \mathrm{kHz}, \mathrm{S} 5=$ open

Line-loss compensation receive

$\Delta \mathrm{GR}=\mathrm{GR}\left(\right.$ at $\left.\mathrm{I}_{\mathrm{L}}=73 \mathrm{~mA}\right)-\mathrm{GR}\left(\right.$ at $\left.\mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}\right)$
RX-mode: $\mathrm{V}_{\mathrm{gen}}=300 \mathrm{mV} / 1 \mathrm{kHz}, \mathrm{S} 7 \mathrm{~b}$

Receiving gain

$\mathrm{GR}=20 \times \log \left(\frac{\mathrm{V}_{\mathrm{RECO}}}{\mathrm{V}_{\mathrm{L}}}\right)$
RX-mode: $\mathrm{V}_{\text {gen }}=300 \mathrm{mV} / 1 \mathrm{kHz}, \mathrm{S} 7 \mathrm{~b}$

Sidetone reduction

GSTA $=20 \times \log \left(\frac{\mathrm{V}_{\mathrm{L}}}{\mathrm{V}_{\text {RECO }}}\right)($ in TX-mode $)+\mathrm{GR}$
TX-mode: $\mathrm{V}_{\mathrm{MIC}}=3 \mathrm{mV} / 1 \mathrm{kHz}, \mathrm{S} 5=$ open

Input impedance of microphone amplifier

$$
\mathrm{Ri}=\frac{50 \mathrm{k}}{\left(\frac{\mathrm{~V}_{\mathrm{L}(\mathrm{~S} 6=\text { closed })}}{\mathrm{V}_{\mathrm{L}(\mathrm{~S} 6=\text { open })}}-1\right)}
$$

TX-mode: $\mathrm{V}_{\text {MIC }}=3 \mathrm{mV} / 1 \mathrm{kHz}, \mathrm{S} 5=$ open

Gain change when muted

$G R M=20 \times \log \frac{\mathrm{V}_{\text {RECO }}}{\mathrm{V}_{\mathrm{L}}}($ Mute $=$ inactive $)-20 \times \log \frac{\mathrm{V}_{\text {RECO }}}{\mathrm{V}_{\mathrm{L}}}$ (Mute $=$ active $)$
$\mathrm{V}_{\mathrm{gen}}=100 \mathrm{mV} / 1 \mathrm{kHz}, \mathrm{S} 5=$ open, $\mathrm{S} 8=$ open

Total Harmonic Distortion (THD)

$\mathrm{THD}=20 \times \log \left(\frac{\sqrt{\mathrm{n}_{1} \times \mathrm{U}_{\mathrm{LG}}{ }^{2}+\mathrm{n}_{1} \times \mathrm{U}_{\mathrm{HG}}{ }^{2}+\mathrm{n}_{2} \times \mathrm{U}_{\mathrm{LG}}{ }^{2}+\mathrm{n}_{2} \times \mathrm{U}_{\mathrm{HG}}{ }^{2}+\ldots \mathrm{n}_{\mathrm{n}} \times \mathrm{U}_{\mathrm{LG}}{ }^{2}+\mathrm{n}_{\mathrm{n}} \times \mathrm{U}_{\mathrm{HG}}{ }^{2}}}{\sqrt{\mathrm{U}_{\mathrm{LG}}{ }^{2}+\mathrm{U}_{\mathrm{HG}}{ }^{2}}}\right)$
$\mathrm{n}_{1}, \ldots \mathrm{n}_{\mathrm{n}}=$ harmonics of high and low frequency group

U3761MB-T

Packaging Information

Ozone Depleting Substances Policy Statement

It is the policy of Atmel Germany GmbH to

1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Atmel Wireless \& Microcontrollers products for any unintended or unauthorized application, the buyer shall indemnify Atmel Wireless \& Microcontrollers against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Data sheets can also be retrieved from the Internet: http://www.atmel-wm.com

Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 672423

