
TMS320x2803x Piccolo Control Law Accelerator
(CLA)

Reference Guide

Literature Number: SPRUGE6B

May 2009–Revised May 2010

2 SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

Preface ... 6
1 Control Law Accelerator (CLA) Overview ... 8
2 CLA Interface .. 10

2.1 CLA Memory .. 10

2.2 CLA Memory Bus .. 10

2.3 Shared Peripherals and EALLOW Protection .. 11

2.4 CLA Tasks and Interrupt Vectors .. 12

3 CLA Configuration and Debug .. 13
3.1 Building a CLA Application ... 13

3.2 Typical CLA Initialization Sequence ... 13

3.3 Debugging CLA Code ... 15

3.4 CLA Illegal Opcode Behavior ... 16

3.5 Resetting the CLA ... 16

4 Register Set .. 17
4.1 Register Memory Mapping .. 17

4.2 Task Interrupt Vector Registers .. 18

4.3 Configuration Registers ... 18

4.4 Execution Registers ... 29

5 Pipeline .. 32
5.1 Pipeline Overview .. 32

5.2 CLA Pipeline Alignment ... 32

5.3 Parallel Instructions .. 35

6 Instruction Set .. 37
6.1 Instruction Descriptions ... 37

6.2 Addressing Modes and Encoding .. 39

6.3 Instructions .. 41

Appendix A CLA and CPU Arbitration .. 151
A.1 CLA and CPU Arbitration .. 151

Appendix B Revision History ... 154

3SPRUGE6B–May 2009–Revised May 2010 Table of Contents

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com

List of Figures

1 CLA Block Diagram... 9

2 Task Interrupt Vector (MVECT1/2/3/4/5/6/7/8) Register ... 18

3 Control Register (MCTL) ... 18

4 Memory Configuration Register (MMEMCFG)... 20

5 CLA Peripheral Interrupt Source Select 1 Register (MPISRCSEL1) ... 21

6 Interrupt Enable Register (MIER) ... 22

7 Interrupt Flag Register (MIFR)... 23

8 Interrupt Overflow Flag Register (MIOVF) ... 24

9 Interrupt Run Status Register (MIRUN) .. 25

10 Interrupt Force Register (MIFRC) ... 26

11 Interrupt Flag Clear Register (MICLR).. 27

12 Interrupt Overflow Flag Clear Register (MICLROVF)... 28

13 Program Counter (MPC).. 29

14 CLA Status Register (MSTF) .. 29

List of Tables

1 CLA Module Control and Status Register Set ... 17

2 Task Interrupt Vector (MVECT1/2/3/4/5/6/7/8) Field Descriptions .. 18

3 Control Register (MCTL) Field Descriptions ... 19

4 Memory Configuration Register (MMEMCFG) Field Descriptions .. 20

5 Peripheral Interrupt Source Select 1 (MPISRCSEL1) Register Field Descriptions 21

6 Interrupt Enable Register (MIER) Field Descriptions ... 22

7 Interrupt Flag Register (MIFR) Field Descriptions .. 23

8 Interrupt Overflow Flag Register (MIOVF) Field Descriptions ... 24

9 Interrupt Run Status Register (MIRUN) Field Descriptions .. 25

10 Interrupt Force Register (MIFRC) Field Descriptions ... 26

11 Interrupt Flag Clear Register (MICLR) Field Descriptions ... 27

12 Interrupt Overflow Flag Clear Register (MICLROVF) Field Descriptions .. 28

13 Program Counter (MPC) Field Descriptions ... 29

14 CLA Status (MSTF) Register Field Descriptions .. 30

15 Write Followed by Read - Read Occurs First ... 33

16 Write Followed by Read - Write Occurs First ... 33

17 ADC to CLA Early Interrupt Response ... 35

18 Operand Nomenclature ... 37

19 INSTRUCTION dest, source1, source2 Short Description... 38

20 Addressing Modes... 39

21 Shift Field Encoding ... 39

22 Condition Field Encoding ... 40

23 Instructions ... 41

24 Pipeline Activity For MBCNDD, Branch Not Taken .. 56

25 Pipeline Activity For MBCNDD, Branch Taken ... 56

26 Pipeline Activity For MCCNDD, Call Not Taken .. 62

27 Pipeline Activity For MCCNDD, Call Taken ... 62

28 Pipeline Activity For MMOV16 MARx, MRa , #16I .. 94

29 Pipeline Activity For MMOV16 MAR0/MAR1, mem16 .. 97

30 Pipeline Activity For MMOVI16 MAR0/MAR1, #16I ... 110

31 Pipeline Activity For MRCNDD, Return Not Taken ... 132

4 List of Figures SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com

32 Pipeline Activity For MRCNDD, Return Taken .. 132

33 Pipeline Activity For MSTOP ... 135

34 Revisions to this Document... 154

5SPRUGE6B–May 2009–Revised May 2010 List of Tables

Copyright © 2009–2010, Texas Instruments Incorporated

Preface
SPRUGE6B–May 2009–Revised May 2010

Read This First

The C28x Control Law Accelerator (CLA) is an independent, fully-programmable, 32-bit floating-point math
processor that brings concurrent control-loop execution to the C28x family. The low interrupt-latency of the
CLA allows it to read ADC samples "just-in-time." This significantly reduces the ADC sample to output
delay to enable faster system response and higher MHz control loops. By using the CLA to service
time-critical control loops, the main CPU is free to perform other system tasks such as communications
and diagnostics. This document provides an overview of the architectural structure and instruction set of
the C28x Control Law Accelerator.

The Control Law Accelerator module described in this reference guide is a Type 0 CLA. See the
TMS320x28xx, 28xxx DSP Peripheral Reference Guide (SPRU566) for a list of all devices with a CLA
module of the same type, to determine the differences between the types, and for a list of device-specific
differences within a type. This document describes the architecture, pipeline, instruction set, and interrupts
of the C28x Control Law Accelerator.

About This Manual

The TMS320C2000™ is part of the TMS320™ family.

Notational Conventions

This document uses the following conventions.

• Hexadecimal numbers are shown with the suffix h or with a leading 0x. For example, the following
number is 40 hexadecimal (decimal 64): 40h or 0x40.

• Registers in this document are shown in figures and described in tables.

– Each register figure shows a rectangle divided into fields that represent the fields of the register.
Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties.

– Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation

The following books describe the TMS320x28x and related support tools that are available on the TI
website:

SPRS584 — TMS320F28032, TMS320F28033, TMS320F28034, TMS320F28035 Piccolo
Microcontrollers Data Manual contains the pinout, signal descriptions, as well as electrical and
timing specifications for the 2803x devices.

SPRZ295 — TMS320F28032, TMS320F28033, TMS320F28034, TMS320F28035 Piccolo MCU Silicon
Errata describes known advisories on silicon and provides workarounds.

CPU User's Guides—
SPRU430 — TMS320C28x CPU and Instruction Set Reference Guide describes the central processing

unit (CPU) and the assembly language instructions of the TMS320C28x fixed-point digital signal
processors (DSPs). It also describes emulation features available on these DSPs.

Peripheral Guides—

SPRUGL8 — TMS320x2803x Piccolo System Control and Interrupts Reference Guide describes the
various interrupts and system control features of the 2803x microcontrollers (MCUs).

6 Preface SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru566
http://www.ti.com/lit/pdf/SPRS584
http://www.ti.com/lit/pdf/SPRZ295
http://www.ti.com/lit/pdf/SPRU430
http://www.ti.com/lit/pdf/SPRUGL8

www.ti.com Related Documentation

SPRU566 — TMS320x28xx, 28xxx DSP Peripheral Reference Guide describes the peripheral
reference guides of the 28x digital signal processors (DSPs).

SPRUGO0 — TMS320x2803x Piccolo Boot ROM Reference Guide describes the purpose and features
of the boot loader (factory-programmed boot-loading software) and provides examples of code. It
also describes other contents of the device on-chip boot ROM and identifies where all of the
information is located within that memory.

SPRUGE6 — TMS320x2803x Piccolo Control Law Accelerator (CLA) Reference Guide describes the
operation of the Control Law Accelerator (CLA).

SPRUGE2 — TMS320x2803x Piccolo Local Interconnect Network (LIN) Module Reference Guide
describes the operation of the Local Interconnect Network (LIN) Module.

SPRUFK8 — TMS320x2803x Piccolo Enhanced Quadrature Encoder Pulse (eQEP) Reference Guide
describes the operation of the Enhanced Quadrature Encoder Pulse (eQEP) .

SPRUGL7 — TMS320x2803x Piccolo Enhanced Controller Area Network (eCAN) Reference Guide
describes the operation of the Enhanced Controller Area Network (eCAN).

SPRUGE5 — TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and Comparator
Reference Guide describes how to configure and use the on-chip ADC module, which is a 12-bit
pipelined ADC.

SPRUGE9 — TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator (ePWM) Module
Reference Guide describes the main areas of the enhanced pulse width modulator that include
digital motor control, switch mode power supply control, UPS (uninterruptible power supplies), and
other forms of power conversion.

SPRUGE8 — TMS320x2802x, 2803x Piccolo High-Resolution Pulse Width Modulator (HRPWM)
describes the operation of the high-resolution extension to the pulse width modulator (HRPWM).

SPRUGH1 — TMS320x2802x, 2803x Piccolo Serial Communications Interface (SCI) Reference
Guide describes how to use the SCI.

SPRUFZ8 — TMS320x2802x, 2803x Piccolo Enhanced Capture (eCAP) Module Reference Guide
describes the enhanced capture module. It includes the module description and registers.

SPRUG71 — TMS320x2802x, 2803x Piccolo Serial Peripheral Interface (SPI) Reference Guide
describes the SPI - a high-speed synchronous serial input/output (I/O) port - that allows a serial bit
stream of programmed length (one to sixteen bits) to be shifted into and out of the device at a
programmed bit-transfer rate.

SPRUFZ9 — TMS320x2802x, 2803x Piccolo Inter-Integrated Circuit (I2C) Reference Guide describes
the features and operation of the inter-integrated circuit (I2C) module.

Tools Guides—
SPRU513 — TMS320C28x Assembly Language Tools v5.0.0 User's Guide describes the assembly

language tools (assembler and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging directives for the
TMS320C28x device.

SPRU514 — TMS320C28x Optimizing C/C++ Compiler v5.0.0 User's Guide describes the
TMS320C28x™ C/C++ compiler. This compiler accepts ANSI standard C/C++ source code and
produces TMS320 DSP assembly language source code for the TMS320C28x device.

SPRU608 — TMS320C28x Instruction Set Simulator Technical Overview describes the simulator,
available within the Code Composer Studio for TMS320C2000 IDE, that simulates the instruction
set of the C28x™ core.

TMS320C28x, C28x are trademarks of Texas Instruments.

7SPRUGE6B–May 2009–Revised May 2010 Read This First

Copyright © 2009–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SPRU566
http://www.ti.com/lit/pdf/SPRUGO0
http://www.ti.com/lit/pdf/SPRUGE6
http://www.ti.com/lit/pdf/SPRUGE2
http://www.ti.com/lit/pdf/SPRUFK8
http://www.ti.com/lit/pdf/SPRUGL7
http://www.ti.com/lit/pdf/SPRUGE5
http://www.ti.com/lit/pdf/SPRUGE9
http://www.ti.com/lit/pdf/SPRUGE8
http://www.ti.com/lit/pdf/SPRUGH1
http://www.ti.com/lit/pdf/SPRUFZ8
http://www.ti.com/lit/pdf/SPRUG71
http://www.ti.com/lit/pdf/SPRUFZ9
http://www.ti.com/lit/pdf/SPRU513
http://www.ti.com/lit/pdf/SPRU514
http://www.ti.com/lit/pdf/SPRU608

Reference Guide
SPRUGE6B–May 2009–Revised May 2010

TMS320x2803x Piccolo Control Law Accelerator (CLA)

The C28x Control Law Accelerator (CLA) is an independent, fully-programmable, 32-bit floating-point math
processor that brings concurrent control-loop exceuction to the C28x family. The low interrupt-latency of
the CLA allows it to read ADC samples "just-in-time". This significantly reduces the ADC sample to output
delay to enable faster system response and higher MHz control loops. By using the CLA to service
time-critical control loops, the main CPU is free to perform other system tasks such as communications
and diagnostics. This chapter provides an overview of the arcitectural structure and components of the
C28x Control Law Accelerator.

1 Control Law Accelerator (CLA) Overview

The control law accelerator extends the capabilities of the C28x CPU by adding parallel processing.
Time-critical control loops serviced by the CLA can achieve low ADC sample to output delay. Thus, the
CLA enables faster system response and higher frequency control loops. Utilizing the CLA for time-critical
tasks frees up the main CPU to perform other system and communication functions concurently. The
following is a list of major features of the CLA.

• Clocked at the same rate as the main CPU (SYSCLKOUT).
• An independent architecture allowing CLA algorithm execution independent of the main C28x CPU.

– Complete bus architecture:

• Program address bus and program data bus
• Data address bus, data read bus and data write bus

– Independent eight stage pipeline.
– 12-bit program counter (MPC)
– Four 32-bit result registers (MR0-MR3)
– Two 16-bit auxiliary registers (MAR0, MAR1)
– Status register (MSTF)

• Instruction set includes:

– IEEE single-precision (32-bit) floating point math operations
– Floating-point math with parallel load or store
– Floating-point multiply with parallel add or subtract
– 1/X and 1/sqrt(X) estimations
– Data type conversions.
– Conditional branch and call
– Data load/store operations

• The CLA program code can consist of up to eight tasks or interrupt service routines.

– The start address of each task is specified by the MVECT registers.
– No limit on task size as long as the tasks fit within the CLA program memory space.
– One task is serviced at a time through to completion. There is no nesting of tasks.
– Upon task completion a task-specific interrupt is flagged within the PIE.
– When a task finishes the next highest-priority pending task is automatically started.

• Task trigger mechanisms:

– C28x CPU via the IACK instruction
– Task1 to Task7: the corresponding ADC or ePWM module interrupt. For example:

• Task1: ADCINT1 or EPWM1_INT

8 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

MVECT1

MIFR

MIER
MIFRC

MVECT2

MIRUN

MPERINT1

to

MPERINT8

PIE

Peripheral Interrupts

ADCINT1 to

ADCINT8

EPWM1_INT to

INTEPWM7_INT

CLA

Program

Memory

MMEMCFG

MR0(32)

MPC(12)

MR1(32)

MR3(32)
MAR0(32)

MSTF(32)

MR2(32)

MAR1(32)

MIOVF
MICLR

MCTL

MICLROVF

MPISRCSEL1

MVECT3
MVECT4
MVECT5
MVECT6
MVECT7
MVECT8

Main

28x

CPU

INT11

M
a

in
C

P
U

B
U

S

INT12

CPU Timer 0

Map to CLA or
CPU Space

CLA
Data

Memory

Comparator
Registers

ePWM
and

HRPWM
Registers

ADC
Result

Registers

CLA
Shared

Message
RAMs

Main CPU Read/Write Data Bus

CLA Data Read Address Bus

CLA Data Write Data Bus

CLA Data Write Address Bus

CLA Data Read Data Bus

CLA Program Address Bus

CLA Program Data Bus

MEALLOW

Main CPU Read Data Bus

Map to CLA or
CPU Space

C
L

A
D

a
ta

 B
u

s

M
a
in

 C
P

U
 B

u
s

CLA Execution
Registers

CLA Control
Registers

SYSCLKOUT
CLAENCLK

SYSRS

LVF
LUF

CLA_INT1 to CLA_INT8

www.ti.com Control Law Accelerator (CLA) Overview

• Task2: ADCINT2 or EPWM2_INT
• Task7: ADCINT7 or EPWM7_INT

– Task8: ADCINT8 or by CPU Timer 0.
• Memory and Shared Peripherals:

– Two dedicated message RAMs for communication between the CLA and the main CPU.
– The C28x CPU can map CLA program and data memory to the main CPU space or CLA space.
– The CLA has direct access to the ePWM+HRPWM, Comparator and ADC Result registers.

Figure 1. CLA Block Diagram

9SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

CLA Interface www.ti.com

2 CLA Interface

This chapter describes how the C28x main CPU can interface to the CLA and vice versa.

2.1 CLA Memory

The CLA can access three types of memory: program, data and message RAMs. The behavior and
arbitration for each type of memory is described in detail in Appendix A.

• CLA Program Memory
At reset memory designated for CLA program is mapped to the main CPU memory and is treated like
any other memory block. While mapped to CPU space, the main CPU can copy the CLA program code
into the memory block. During debug the block can also be loaded directly by Code Composer Studio.
Once the memory is initialized with CLA code, the main CPU maps it to the CLA program space by
writing a 1 to the MMEMCFG[PROGE] bit. When mapped to the CLA program space, the block can
only be accessed by the CLA for fetching opcodes. The main CPU can only perform debugger
accesses when the CLA is either halted or idle. If the CLA is executing code, then all debugger
accesses are blocked and the memory reads back all 0x0000.
CLA program memory is protected by the code security module. All CLA program fetches are
performed as 32-bit read operations and all opcodes must be aligned to an even address. Since all
CLA opcodes are 32-bits, this alignment naturally occurs.

• CLA Data Memory
There are two CLA data memory blocks on the device. At reset, both blocks are mapped to the main
CPU memory space and treated by the CPU like any other memory block. While mapped to CPU
space, the main CPU can initialize the memory with data tables and coefficients for the CLA to use.
Once the memory is initialized with CLA data the main CPU maps it to the CLA space. Each block can
be individually mapped via the MMEMCFG[RAM0E] and MMEMCFG[RAM1E] bits. When mapped to
the CLA data space, the memory can be accessed only by the CLA for data operations. The main CPU
can only perform debugger accesses in this mode.
Both CLA data RAMs are protected by the code security module and emulation code security logic.

• CLA Shared Message RAMs
There are two small memory blocks for data sharing and communication between the CLA and the
main CPU. The message RAMs are always mapped to both CPU and CLA memory spaces and are
protected by the code security module. The message RAMs allow data accesses only; no program
fetches can be performed.

– CLA to CPU Message RAM
The CLA can use this block to pass data to the main CPU. This block is both readable and writable
by the CLA. This block is also readable by the main CPU but writes by the main CPU are ignored.

– CPU to CLA Message RAM
The main CPU can use this block to pass data and messages to the CLA. This message RAM is
both readable and writable by the main CPU. The CLA can perform reads but writes by the CLA
are ignored.

2.2 CLA Memory Bus

The CLA has dedicated bus architecture similar to that of the C28x CPU where there is a program read,
data read and data write bus. Thus there can be simultaneous instruction fetch, data read and data write
in a single cycle. Like the C28x CPU, the CLA expects memory logic to align any 32-bit read or write to an
even address. If the address-generation logic generates an odd address, the CLA will begin reading or
writing at the previous even address. This alignment does not affect the address values generated by the
address-generation logic.

• CLA Program Bus
The CLA program bus has a access range of 2048 32-bit instructions. Since all CLA instructions are
32-bits, this bus always fetches 32-bits at a time and the opcodes must be even word aligned. The
amount of program space available for the CLA is device dependent as described in the
device-specific data manual.

• CLA Data Read Bus
The CLA data read bus has a 64K x 16 address range. The bus can perform 16 or 32-bit reads and

10 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com CLA Interface

will automatically stall if there are memory access conflicts. The data read bus has access to both the
message RAMs, CLA data memory and the ePWM, HRPWM, Comparator and ADC result registers.

• CLA Data Write Bus
The CLA data write bus has a 64K x 16 address range. This bus can perform 16 or 32-bit writes. The
bus will automatically stall if there are memory access conflicts. The data write bus has access to the
CLA to CPU message RAM, CLA data memory and the ePWM, HRPWM, and Comparator registers.

2.3 Shared Peripherals and EALLOW Protection

The ePWM, HRPWM, Comparator, and ADC result registers can be accessed by both the CLA and the
main CPU. Appendix A describes in detail the CLA and CPU arbitration when both access these registers.

Several peripheral control registers are protected from spurious 28x CPU writes by the EALLOW
protection mechanism. These same registers are also protected from spurious CLA writes. The EALLOW
bit in the main CPU status register 1 (ST1) indicates the state of protection for the main CPU. Likewise the
MEALLOW bit in the CLA status register (MSTF) indicates the state of write protection for the CLA. The
MEALLOW CLA instruction enables write access by the CLA to EALLOW protected registers. Likewise the
MEDIS CLA instruction will disable write access. This way the CLA can enable/disable write access
independent of the main CPU.

The 2803x ADC offers the option to generate an early interrupt pulse when the ADC begins conversion. If
this option is used to start a ADC triggered CLA task then the 8th instruction can read the result as soon
as the conversion completes. The CLA pipeline activity for this scenario is shown in Section 5.

11SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

CLA Interface www.ti.com

2.4 CLA Tasks and Interrupt Vectors

The CLA program code is divided up into tasks or interrupt service routines. Tasks do not have a fixed
starting location or length. The CLA program memory can be divided up as desired. The CLA knows
where a task begins by the content of the associated interrupt vector (MVECT1 to MVECT8) and the end
is indicated by the MSTOP instruction.

The CLA supports 8 tasks. Task 1 has the highest priority and task 8 has the lowest priority. A task can be
requested by a peripheral interrupt or by software:

• Peripheral interrupt trigger
Each task has specific interrupt sources that can trigger it. Configure the MPISRCSEL1 register to
select from the potential sources. For example, task 1 (MVECT1) can be triggered by ADCINT1 or
EPWM1_INT as specified in MPISRCSEL1[PERINT1SEL]. You can not, however, trigger task 1
directly using EPWM2_INT. If you need to trigger a task using EPWM2_INT then the best solution is to
use task 2 (MVECT2). Another possible solution is to take EPWM2_INT with the main CPU and trigger
a task with software.
To disable the peripheral from sending an interrupt request to the CLA set the PERINT1SEL option to
no interrupt.

• Software trigger
Tasks can also be started by the main CPU software writing to the MIFRC register or by the IACK
instruction. Using the IACK instruction is more efficient because it does not require you to issue an
EALLOW to set MIFR bits. Set the MCTL[IACKE] bit to enable the IACK feature. Each bit in the
operand of the IACK instruction corresponds to a task. For example IACK #0x0001 will set bit 0 in the
MIFR register to start task 1. Likewise IACK #0x0003 will set bits 0 and 1 in the MIFR register to start
task 1 and task 2.

The CLA has its own fetch mechanism and can run and execute a task independent of the main CPU.
Only one task is serviced at a time; there is no nesting of tasks. The task currently running is indicated in
the MIRUN register. Interrupts that have been received but not yet serviced are indicated in the flag
register (MIFR). If an interrupt request from a peripheral is received and that same task is already flagged,
then the overflow flag bit is set. Overflow flags will remain set until they are cleared by the main CPU.

If the CLA is idle (no task is currently running) then the highest priority interrupt request that is both
flagged (MIFR) and enabled (MIER) will start. The flow is as follows

1. The associated RUN register bit is set (MIRUN) and the flag bit (MIFR) is cleared.
2. The CLA begins execution at the location indicated by the associated interrupt vector (MVECTx).

MVECT is an offset from the first program memory location.
3. The CLA executes instructions until the MSTOP instruction is found. This indicates the end of the task.
4. The MIRUN bit is cleared.
5. The task-specific interrupt to the PIE is issued. This informs the main CPU that the task has

completed.
6. The CLA returns to idle.

Once a task completes the next highest-priority pending task is automatically serviced and this sequence
repeats.

12 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com CLA Configuration and Debug

3 CLA Configuration and Debug

This section discusses the steps necessary to configure and debug the CLA.

3.1 Building a CLA Application

The Control Law Accelerator is programmed in CLA assembly code using the instructions described in
Section 6. CLA assembly code can, and should, reside in the same project with C28x code. The only
restriction is the CLA code must be in its own assembly section. This can be easily done using the .sect
assembly directive. This does not prevent CLA and C28x code from being linked into the same memory
region in the linker command file.

System and CLA initialization are performed by the main CPU. This would typically be done in C or C++
but can also include C28x assembly code. The main CPU will also copy the CLA code to the program
memory and, if needed, initialize the CLA data RAM(s). Once system initialization is complete and the
application begins, the CLA will service its interrupts using the CLA assembly code (or tasks).
Concurrently the main CPU can perform other tasks.

The C2000 codegen tools V5.2.x and higher support CLA instructions when the following switch is set: --
cla_support = cla0.

3.2 Typical CLA Initialization Sequence

A typical CLA initialization sequence is performed by the main CPU as described in this section.

1. Copy CLA code into the CLA program RAM
The source for the CLA code can initially reside in the flash or a data stream from a communications
peripheral or anywhere the main CPU can access it. The debugger can also be used to load code
directly to the CLA program RAM during development.

2. Initialize CLA data RAM if necessary
Populate the CLA data RAM with any required data coefficients or constants.

3. Configure the CLA registers
Configure the CLA registers, but keep interrupts disabled until later (leave MIER == 0):

• Enable the CLA clock in the PCLKCR3 register.
PCLKCR3 register is defined in the device-specific system control and interrupts reference guide.

• Populate the CLA task interrupt vectors: MVECT1 to MVECT8.
Each vector needs to be initialized with the start address of the task to be executed when the CLA
receives the associated interrupt. This address is an offset from the first address in CLA program
memory. For example, 0x0000 corresponds to the first CLA program memory address.

• Select the task interrupt sources
For each task select the interrupt source in the PERINT1SEL register. If a task is going to be
generated by software, select no interrupt.

• Enable IACK to start a task from software if desired
To enable the IACK instruction to start a task set the MCTL[IACKE] bit. Using the IACK instruction
avoids having to set and clear the EALLOW bit.

• Map CLA data RAM(s) to CLA space if necessary
Map either or both of the data RAMs to the CLA space by writing a 1 to the MMEMCFG[RAM0E]
and MMEMCFG[RAM1E] bits. After the memory is mapped to CLA space the main CPU cannot
access it. Allow two SYSCLKOUT cycles between changing the map configuration of this memory
and accessing it.

• Map CLA program RAM to CLA space
Map the CLA program RAM to CLA space by setting the MMEMCFG[PROGE] bit. After the
memory is remapped to CLA space the main CPU will only be able to make debug accesses to the
memory block. Allow two SYSCLKOUT cycles between changing the map configuration of these
memories and accessing them.

4. Initialize the PIE vector table and registers
When a CLA task completes the associated interrupt in the PIE will be flagged. The CLA overflow and
underflow flags also have associated interrupts within the PIE.

13SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

CLA Configuration and Debug www.ti.com

5. Enable CLA tasks/interrupts
Set appropriate bits in the interrupt enable register (MIER) to allow the CLA to service interrupts.

6. Initialize other peripherals
Initialize any peripherals (ePWM, ADC etc.) that will generate an interrupt to the CLA and be serviced
by a CLA task.
The CLA is now ready to service interrupts and the message RAMs can be used to pass data between
the CPU and the CLA. Typically mapping of the CLA program and data RAMs occurs only during the
initialization process. If after some time the you want to re-map these memories back to CPU space
then disable interrupts and make sure all tasks have completed by checking the MIRUN register.
Always allow two SYSCLKOUT cycles when changing the map configuration of these memories and
accessing them.

14 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com CLA Configuration and Debug

3.3 Debugging CLA Code

Debugging the CLA code is a simple process that occurs independently of the main CPU.

1. Insert a breakpoint in CLA code
Insert a CLA breakpoint (MDEBUGSTOP instruction) into the code where you want the CLA to halt,
then rebuild and reload the code. Because the CLA does not flush its pipeline when you single-step,
the MDEBUGSTOP instruction must be inserted as part of the code. The debugger cannot insert it as
needed.
If CLA breakpoints are not enabled, then the MDEBUGSTOP will be ignored and is treated as a
MNOP. The MDEBUGSTOP instruction can be placed anywhere in the CLA code as long as it is not
within three instructions of a MBCNDD, MCCNDD, or MRCNDD instruction.

2. Enable CLA breakpoints
First, enable the CLA breakpoints in the debugger. In Code Composer Studio V3.3, this is done by
connecting the CLA debug window (debug->connect). Breakpoints are disabled when this window is
disconnected.

3. Start the task
There are three ways to start the task:

• The peripheral can assert an interrupt
• The main CPU can execute an IACK instruction, or
• You can manually write to the MIFRC register in the debugger window
When the task starts, the CLA will execute instructions until the MDEBUGSTOP is in the D2 phase of
the pipeline. At this point, the CLA will halt and the pipeline will be frozen. The MPC register will reflect
the address of the MDEBUGSTOP instruction.

4. Single-step the CLA code
Once halted, you can single-step the CLA code one cycle at a time. The behavior of a CLA single-step
is different than the main C28x. When issuing a CLA single-step, the pipeline is clocked only one cycle
and then again frozen. On the 28x CPU, the pipeline is flushed for each single-step.
You can also run to the next MDEBUGSTOP or to the end of the task. If another task is pending, it will
automatically start when you run to the end of the task.

NOTE: When CLA program memory is mapped to the CLA memory space, a CLA fetch has higher
priority than CPU debug reads. For this reason, it is possible for the CLA to permanently
block CPU debug accesses if the CLA is executing in a loop. This might occur when initially
developing CLA code due to a bug that causes an infinite loop. To avoid locking up the main
CPU, the program memory will return all 0x0000 for CPU debug reads when the CLA is
running. When the CLA is halted or idle then normal CPU debug read and write access to
CLA program memory can be performed.

If the CLA gets caught in a infinite loop, you can use a soft or hard reset to exit the condition.
A debugger reset will also exit the condition.

There are special cases that can occur when single-stepping a task such that the program counter,
MPC, reaches the MSTOP instruction at the end of the task.

• MPC halts at or after the MSTOP with a task already pending
If you are single-stepping or halted in "task A" and "task B" comes in before the MPC reaches the
MSTOP, then "task B" will start if you continue to step through the MSTOP instruction. Basically if
"task B" is pending before the MPC reaches MSTOP in "task A" then there is no issue in "task B"
starting and no special action is required.

• MPC halts at or after the MSTOP with no task pending
In this case you have single-stepped or halted in "task A" and the MPC has reached the MSTOP
with no tasks pending. If "task B" comes in at this point, it will be flagged in the MIFR register but it
may or may not start if you continue to single-step through the MSTOP instruction of "task A."
It depends on exactly when the new task comes in. To reliably start "task B" perform a soft reset
and reconfigure the MIER bits. Once this is done, you can start single-stepping "task B."
This case can be handled slightly differently if there is control over when "task B" comes in (for
example using the IACK instruction to start the task). In this case you have single-stepped or halted

15SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

CLA Configuration and Debug www.ti.com

in "task A" and the MPC has reached the MSTOP with no tasks pending. Before forcing "task B,"
run free to force the CLA out of the debug state. Once this is done you can force "task B" and
continue debugging.

5. If desired, disable CLA breakpoints
In CCS V3.3 you can disable the CLA breakpoints by disconnecting the CLA debug window. Make
sure to first issue a run or reset; otherwise, the CLA will be halted and no other tasks will start.

3.4 CLA Illegal Opcode Behavior

If the CLA fetches an opcode that does not correspond to a legal instruction, it will behave as follows:

• The CLA will halt with the illegal opcode in the D2 phase of the pipeline as if it were a breakpoint. This
will occur whether CLA breakpoints are enabled or not.

• The CLA will issue the task-specific interrupt to the PIE.
• The MIRUN bit for the task will remain set.

Further single-stepping ignored once execution halts due to an illegal op-code. To exit this situation, issue
either a soft or hard reset of the CLA as described in Section 3.5.

3.5 Resetting the CLA

There may be times when you need to reset the CLA. For example, during code debug the CLA may enter
an infinite loop due to a code bug. The CLA has two types of resets: hard and soft. Both of these resets
can be performed by the debugger or by the main CPU.

• Hard Reset
Writing a 1 to the MCTL[HARDRESET] bit will perform a hard reset of the CLA. The behavior of a hard
reset is the same as a system reset (via XRS or the debugger). In this case all CLA configuration and
execution registers will be set to their default state and CLA execution will halt.

• Soft Reset
Writing a 1 to the MCTL[SOFTRESET] bit performs a soft reset of the CLA. If a task is executing it will
halt and the associated MIRUN bit will be cleared. All bits within the interrupt enable (MIER) register
will also be cleared so that no new tasks start.

16 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Register Set

4 Register Set

The CLA register set is independant from that of the main CPU. This chapter describes the CLA register
set.

4.1 Register Memory Mapping

The table below describes the CLA module control and status register set.

Table 1. CLA Module Control and Status Register Set

Size CSM
Name Offset (x16) EALLOW Protected Description

Task Interrupt Vectors

MVECT1 0x0000 1 Yes Yes Task 1 Interrupt Vector

MVECT2 0x0001 1 Yes Yes Task 2 Interrupt Vector

MVECT3 0x0002 1 Yes Yes Task 3 Interrupt Vector

MVECT4 0x0003 1 Yes Yes Task 4 Interrupt Vector

MVECT5 0x0004 1 Yes Yes Task 5 Interrupt Vector

MVECT6 0x0005 1 Yes Yes Task 6 Interrupt Vector

MVECT7 0x0006 1 Yes Yes Task 7 Interrupt Vector

MVECT8 0x0007 1 Yes Yes Task 8 Interrupt Vector

Configuration Registers

MCTL 0x0010 1 Yes Yes Control Register

MMEMCFG 0x0011 1 Yes Yes Memory Configuration Register

MPISRCSEL1 0x0014 2 Yes Yes Peripheral Interrupt Source Select 1 Register

MIFR 0x0020 1 Yes Yes Interrupt Flag Register

MIOVF 0x0021 1 Yes Yes Interrupt Overflow Flag Register

MIFRC 0x0022 1 Yes Yes Interrupt Force Register

MICLR 0x0023 1 Yes Yes Interrupt Flag Clear Register

MICLROVF 0x0024 1 Yes Yes Interrupt Overflow Flag Clear Register

MIER 0x0025 1 Yes Yes Interrupt Enable Register

MIRUN 0x0026 1 Yes Yes Interrupt Run Status Register

Execution Registers (1)

MPC 0x0028 1 - Yes CLA Program Counter

MAR0 0x0029 1 - Yes CLA Auxiliary Register 0

MAR1 0x002A 1 - Yes CLA Auxiliary Register 1

MSTF 0x002E 2 - Yes CLA Floating-Point Status Register

MR0 0x0030 2 - Yes CLA Floating-Point Result Register 0

MR1 0x0034 2 - Yes CLA Floating-Point Result Register 1

MR2 0x0038 2 - Yes CLA Floating-Point Result Register 2

MR3 0x003C 2 - Yes CLA Floating-Point Result Register 3
(1) The main C28x CPU only has read access to the CLA execution registers for debug purposes. The main CPU cannot perform

CPU or debugger writes to these registers.

17SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Register Set www.ti.com

4.2 Task Interrupt Vector Registers

Each CLA interrupt has its own interrupt vector (MVECT1 to MVECT8). This interrupt vector points to the
first instruction of the associated task. When a task begins, the CLA will start fetching instructions at the
location indicated by the appropriate MVECT register .

4.2.1 Task Interrupt Vector (MVECT1/2/3/4/5/6/7/8) Register

The task interrupt vector registers (MVECT1/2/3/4/5/6/7/8) are is shown in Section 4.2.1 and described in
Figure 2.

Figure 2. Task Interrupt Vector (MVECT1/2/3/4/5/6/7/8) Register
15 12 11 0

Reserved MVECT

R-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2. Task Interrupt Vector (MVECT1/2/3/4/5/6/7/8) Field Descriptions

Bits Name Value Description (1)

15-12 Reserved Any writes to these bit(s) must always have a value of 0.

11-0 MVECT 0000 - Offset of the first instruction in the associated task from the start of CLA program space. The CLA
0FFF will begin instruction fetches from this location when the specific task begins.

For example: If CLA program memory begins at CPU address 0x009000 and the code for task 5
begins at CPU address 0x009120, then MVECT5 should be initialized with
0x0120.

There is one MVECT register per task. Interrupt 1 uses MVECT1, interrupt 2 uses MVECT2 and
so forth.

(1) These registers are protected by EALLOW and the code security module.

4.3 Configuration Registers

The configuration registers are described here.

4.3.1 Control Register (MCTL)

The configuration control register (MCTL) is shown in Figure 3 and described in Table 3.

Figure 3. Control Register (MCTL)
15 8

Reserved

R -0

7 3 2 1 0

Reserved IACKE SOFTRESET HARDRESET

R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

18 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Register Set

Table 3. Control Register (MCTL) Field Descriptions

Bits Name Value Description (1)

15-3 Reserved Any writes to these bit(s) must always have a value of 0.

2 IACKE IACK enable

0 The CLA ignores the IACK instruction. (default)

1 Enable the main CPU to use the IACK #16bit instruction to set MIFR bits in the same manner as
writing to the MIFRC register. Each bit in the operand, #16bit, corresponds to a bit in the MIFRC
register. Using IACK has the advantage of not having to first set the EALLOW bit. This allows the
main CPU to efficiently trigger a CLA task through software.

Examples Write a 1 to MIFRC bit 0 to force task 1IACK #0x0001

Write a 1 to MIFRC bit 0 and 1 to force task 1 and task 2IACK #0x0003

1 SOFTRESET Soft Reset

0 This bit always reads back 0 and writes of 0 are ignored.

1 Writing a 1 will cause a soft reset of the CLA. This will stop the current task, clear the MIRUN flag
and clear all bits in the MIER register. After a soft reset you must wait at least 1 SYSCLKOUT cycle
before reconfiguring the MIER bits. If these two operations are done back-to-back then the MIER
bits will not get set.

0 HARDRESET Hard Reset

0 This bit always reads back 0 and writes of 0 are ignored.

1 Writing a 1 will cause a hard reset of the CLA. This will set all CLA registers to their default state.
(1) This register is protected by EALLOW and the code security module.

19SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Register Set www.ti.com

4.3.2 Memory Configuration Register (MMEMCFG)

The MMEMCFG register is used to map the CLA program and data RAMs to either the CPU or the CLA
memory space. Typically mapping of the CLA program and data RAMs occurs only during the initialization
process. If after some time the you want to re-map these memories back to CPU space then disable
interrupts (MIER) and make sure all tasks have completed by checking the MIRUN register. Allow two
SYSCLKOUT cycles between changing the map configuration of these memories and accessing them.
Refer to Section A.1.3 for CLA and CPU access arbitration details.

Figure 4. Memory Configuration Register (MMEMCFG)
15 8

Reserved

R -0

7 6 5 4 3 1 0

Reserved RAM1E RAM0E Reserved PROGE

R-0 R/W-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4. Memory Configuration Register (MMEMCFG) Field Descriptions

Bits Name Value Description (1)

15-6 Reserved Any writes to these bit(s) must always have a value of 0.

5 RAM1E CLA Data RAM 1 Enable

Allow two SYSCLKOUT cycles between changing this bit and accessing the memory.

0 The CLA data SARAM block 1 is mapped to the main CPU program and data space. CLA reads
will return zero. (default)

1 The CLA data SARAM block 1 is mapped to CLA data space. The main CPU can only make
debug accesses to this block.

4 RAM0E CLA Data RAM 0 Enable

Allow two SYSCLKOUT cycles between changing this bit and accessing the memory.

0 The CLA data SARAM block 0 is mapped to the main CPU program and data space. CLA reads
will return zero. (default)

1 The CLA data SARAM block 0 is mapped to CLA data space. The main CPU can only make
debug accesses to this block.

3 - 1 Reserved Any writes to these bit(s) must always have a value of 0.

0 PROGE CLA Program Space Enable

Allow two SYSCLKOUT cycles between changing this bit and accessing the memory.

0 CLA program SARAM is mapped to the main CPU program and data space. If the CLA attempts
a program fetch the result will be the same as an illegal opcode fetch as described in Section 3.4.
(default)

1 CLA program SARAM is mapped to the CLA program space. The main CPU can only make
debug accesses to this block.

In this state a CLA fetch has higher priority than CPU debug reads. It is, therefore, possible for
the CLA to permanently block debug accesses if the CLA is executing in a loop. This might occur
when initially developing CLA code due to a bug. To avoid this issue, the program memory will
return all 0x0000 for CPU debug reads (ignore writes) when the CLA is running. When the CLA is
halted or idle then normal CPU debug read and write access can be performed.

(1) This register is protected by EALLOW and the code security module.

4.3.3 CLA Peripheral Interrupt Source Select 1 Register (MPISRCSEL1)

Each task has specific peripherals that can start it. For example, Task2 can be started by ADCINT2 or
EPWM2_INT. To configure which of the possible peripherals will start a task configure the MPISRCSEL1
register shown in Figure 5. Choosing the option "no interrupt source" means that only the main CPU
software will be able to start the given task.

20 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Register Set

Figure 5. CLA Peripheral Interrupt Source Select 1 Register (MPISRCSEL1)
31 28 27 24 23 20 19 16

PERINT8SEL PERINT7SEL PERINT6SEL PERINT5SEL

R/W-0 R/W-0 R/W-0 R/W-0

15 12 11 8 7 4 3 0

PERINT4SEL PERINT3SEL PERINT2SEL PERINT1SEL

R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 5. Peripheral Interrupt Source Select 1 (MPISRCSEL1) Register Field Descriptions

Bits Field Value (1) Description (2)

31 - 28 PERINT8SEL Task 8 Peripheral Interrupt Input Select

0000 ADCINT8 is the input for interrupt task 8. (default)

0010 CPU Timer 0 is the input for interrupt task 8.

xxx1 No interrupt source for task 8.

27 - 24 PERINT7SEL Task 7 Peripheral Interrupt Input Select

0000 ADCINT7 is the input for interrupt task 7. (default)

0010 ePWM7 is the input for interrupt task 7. (EPWM7_INT)

xxx1 No interrupt source for task 7.

23 - 20 PERINT6SEL Task 6 Peripheral Interrupt Input Select

0000 ADCINT6 is the input for interrupt task 6. (default)

0010 ePWM6 is the input for interrupt task 6. (EPWM6_INT)

xxx1 No interrupt source for task 6.

19 - 16 PERINT5SEL Task 5 Peripheral Interrupt Input Select

0000 ADCINT5 is the input for interrupt task 5. (default)

0010 ePWM5 is the input for interrupt task 5. (EPWM5_INT)

xxx1 No interrupt source for task 5.

15 - 12 PERINT4SEL Task 4 Peripheral Interrupt Input Select

0000 ADCINT4 is the input for interrupt task 4. (default)

0010 ePWM4 is the input for interrupt task 4. (EPWM4_INT)

xxx1 No interrupt source for task 4.

11 - 8 PERINT3SEL Task 3 Peripheral Interrupt Input Select

0000 ADCINT3 is the input for interrupt task 3. (default)

0010 ePWM3 is the input for interrupt task 3. (EPWM3_INT)

xxx1 No interrupt source for task 3.

7 - 4 PERINT2SEL Task 2 Peripheral Interrupt Input Select

0000 ADCINT2 is the input for interrupt task 2. (default)

0010 ePWM2 is the input for interrupt task 2. (EPWM2_INT)

xxx1 No interrupt source for task 2.

3 - 0 PERINT1SEL Task 1Peripheral Interrupt Input Select

0000 ADCINT1 is the input for interrupt task 1. (default)

0010 ePWM1 is the input for interrupt task 1. (EPWM1_INT)

xxx1 No interrupt source
(1) All values not shown are reserved.
(2) This register is protected by EALLOW and the code security module.

21SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Register Set www.ti.com

4.3.4 Interrupt Enable Register (MIER)

Setting the bits in the interrupt enable register (MIER) allow an incoming interrupt or main CPU software to
start the corresponding CLA task. Writing a 0 will block the task, but the interrupt request will still be
latched in the flag register (MIFLG). Setting the MIER register bit to 0 while the corresponding task is
executing will have no effect on the task. The task will continue to run until it hits the MSTOP instruction.

When a soft reset is issued, the MIER bits are cleared. There should always be at least a 1 SYSCLKOUT
delay between issuing the soft reset and reconfiguring the MIER bits.

Figure 6. Interrupt Enable Register (MIER)
15 8

Reserved

R -0

7 6 5 4 3 2 1 0

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6. Interrupt Enable Register (MIER) Field Descriptions

Bits Name Value Description (1)

15-8 Reserved Any writes to these bit(s) must always have a value of 0.

7 INT8 Task 8 Interrupt Enable

0 Task 8 interrupt is disabled. (default)

1 Task 8 interrupt is enabled.

6 INT7 Task 7 Interrupt Enable

0 Task 7 interrupt is disabled. (default)

1 Task 7 interrupt is enabled.

5 INT6 Task 6 Interrupt Enable

0 Task 6 interrupt is disabled. (default)

1 Task 6 interrupt is enabled.

4 INT5 Task 5 Interrupt Enable

0 Task 5 interrupt is disabled. (default)

1 Task 5 interrupt is enabled.

3 INT4 Task 4 Interrupt Enable

0 Task 4 interrupt is disabled. (default)

1 Task 4 interrupt is enabled.

2 INT3 Task 3 Interrupt Enable

0 Task 3 interrupt is disabled. (default)

1 Task 3 interrupt is enabled.

1 INT2 Task 2 Interrupt Enable

0 Task 2 interrupt is disabled. (default)

1 Task 2 interrupt is enabled.

0 INT1 Task 1 Interrupt Enable

0 Task 1 interrupt is disabled. (default)

1 Task 1 interrupt is enabled.
(1) This register is protected by EALLOW and the code security module.

22 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Register Set

4.3.5 Interrupt Flag Register (MIFR)

Each bit in the interrupt flag register corresponds to a CLA task. The corresponding bit is automatically set
when the task request is received from the peripheral interrupt. The bit can also be set by the main CPU
writing to the MIFRC register or using the IACK instruction to start the task. To use the IACK instruction to
begin a task first enable this feature in the MCTL register. If the bit is already set when a new peripheral
interrupt is received, then the corresponding overflow bit will be set in the MIOVF register.

The corresponding MIFR bit is automatically cleared when the task begins execution. This will occur if the
interrupt is enabled in the MIER register and no other higher priority task is pending. The bits can also be
cleared manually by writing to the MICLR register. Writes to the MIFR register are ignored.

Figure 7. Interrupt Flag Register (MIFR)
15 8

Reserved

R -0

7 6 5 4 3 2 1 0

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 7. Interrupt Flag Register (MIFR) Field Descriptions

Bits Name Value Description (1)

15-8 Reserved Any writes to these bit(s) must always have a value of 0.

7 INT8 Task 8 Interrupt Flag

0 A task 8 interrupt is currently not flagged. (default)

1 A task 8 interrupt has been received and is pending execution.

6 INT7 Task 7 Interrupt Flag

0 A task 7 interrupt is currently not flagged. (default)

1 A task 7 interrupt has been received and is pending execution.

5 INT6 Task 6 Interrupt Flag

0 A task 6 interrupt is currently not flagged. (default)

1 A task 6 interrupt has been received and is pending execution.

4 INT5 Task 5 Interrupt Flag

0 A task 5 interrupt is currently not flagged. (default)

1 A task 5 interrupt has been received and is pending execution.

3 INT4 Task 4 Interrupt Flag

0 A task 4 interrupt is currently not flagged. (default)

1 A task 4 interrupt has been received and is pending execution.

2 INT3 Task 3 Interrupt Flag

0 A task 3 interrupt is currently not flagged. (default)

1 A task 3 interrupt has been received and is pending execution.

1 INT2 Task 2 Interrupt Flag

0 A task 2 interrupt is currently not flagged. (default)

1 A task 2 interrupt has been received and is pending execution.

0 INT1 Task 1 Interrupt Flag

0 A task 1 interrupt is currently not flagged. (default)

1 A task 1 interrupt has been received and is pending execution.
(1) This register is protected by the code security module.

23SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Register Set www.ti.com

4.3.6 Interrupt Overflow Flag Register (MIOVF)

Each bit in the overflow flag register corresponds to a CLA task. The bit is set when an interrupt overflow
event has occurred for the specific task. An overflow event occurs when the MIFR register bit is already
set when a new interrupt is received from a peripheral source. The MIOVF bits are only affected by
peripheral interrupt events. They do not respond to a task request by the main CPU IACK instruction or by
directly setting MIFR bits. The overflow flag will remain latched and can only be cleared by writing to the
overflow flag clear (MICLROVF) register. Writes to the MIOVF register are ignored.

Figure 8. Interrupt Overflow Flag Register (MIOVF)
15 8

Reserved

R -0

7 6 5 4 3 2 1 0

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8. Interrupt Overflow Flag Register (MIOVF) Field Descriptions

Bits Name Value Description (1)

15-8 Reserved Any writes to these bit(s) must always have a value of 0.

7 INT8 Task 8 Interrupt Overflow Flag

0 A task 8 interrupt overflow has not occurred. (default)

1 A task 8 interrupt overflow has occurred.

6 INT7 Task 7 Interrupt Overflow Flag

0 A task 7 interrupt overflow has not occurred. (default)

1 A task 7 interrupt overflow has occurred.

5 INT6 Task 6 Interrupt Overflow Flag

0 A task 6 interrupt overflow has not occurred. (default)

1 A task 6 interrupt overflow has occurred.

4 INT5 Task 5 Interrupt Overflow Flag

0 A task 5 interrupt overflow has not occurred. (default)

1 A task 5 interrupt overflow has occurred.

3 INT4 Task 4 Interrupt Overflow Flag

0 A task 4 interrupt overflow has not occurred. (default)

1 A task 4 interrupt overflow has occurred.

2 INT3 Task 3 Interrupt Overflow Flag

0 A task 3 interrupt overflow has not occurred. (default)

1 A task 3 interrupt overflow has occurred.

1 INT2 Task 2 Interrupt Overflow Flag

0 A task 2 interrupt overflow has not occurred. (default)

1 A task 2 interrupt overflow has occurred.

0 INT1 Task 1 Interrupt Overflow Flag

0 A task 1 interrupt overflow has not occurred. (default)

1 A task 1 interrupt overflow has occurred.
(1) This register is protected by the code security module.

24 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Register Set

4.3.7 Interrupt Run Status Register (MIRUN)

The interrupt run status register (MIRUN) indicates which task is currently executing. Only one MIRUN bit
will ever be set to a 1 at any given time. The bit is automatically cleared when the task competes and the
respective interrupt is fed to the peripheral interrupt expansion (PIE) block of the device. This lets the main
CPU know when a task has completed. The main CPU can stop a currently running task by writing to the
MCTL[SOFTRESET] bit. This will clear the MIRUN flag and stop the task. In this case no interrupt will be
generated to the PIE.

Figure 9. Interrupt Run Status Register (MIRUN)
15 8

Reserved

R -0

7 6 5 4 3 2 1 0

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9. Interrupt Run Status Register (MIRUN) Field Descriptions

Bits Name Value Description (1)

15-8 Reserved Any writes to these bit(s) must always have a value of 0.

7 INT8 Task 8 Run Status

0 Task 8 is not executing. (default)

1 Task 8 is executing.

6 INT7 Task 7 Run Status

0 Task 7 is not executing. (default)

1 Task 7 is executing.

5 INT6 Task 6 Run Status

0 Task 6 is not executing. (default)

1 Task 6 is executing.

4 INT5 Task 5 Run Status

0 Task 5 is not executing. (default)

1 Task 5 is executing.

3 INT4 Task 4 Run Status

0 Task 4 is not executing. (default)

1 Task 4 is executing.

2 INT3 Task 3 Run Status

0 Task 3 is not executing. (default)

1 Task 3 is executing.

1 INT2 Task 2 Run Status

0 Task 2 is not executing. (default)

1 Task 2 is executing.

0 INT1 Task 1 Run Status

0 Task 1 is not executing. (default)

1 Task 1 is executing.
(1) This register is protected by the code security module.

25SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Register Set www.ti.com

4.3.8 Interrupt Force Register (MIFRC)

The interrupt force register can be used by the main CPU to start tasks through software. Writing a 1 to a
MIFRC bit will set the corresponding bit in the MIFR register. Writes of 0 are ignored and reads always
return 0. The IACK #16bit operation can also be used to start tasks and has the same effect as the
MIFRC register. To enable IACK to set MIFR bits you must first set the MCTL[IACKE] bit. Using IACK has
the advantage of not having to first set the EALLOW bit. This allows the main CPU to efficiently trigger
CLA tasks through software.

Figure 10. Interrupt Force Register (MIFRC)
15 8

Reserved

R -0

7 6 5 4 3 2 1 0

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 10. Interrupt Force Register (MIFRC) Field Descriptions

Bits Name Value Description (1)

15-8 Reserved Any writes to these bit(s) must always have a value of 0.

7 INT8 Task 8 Interrupt Force

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to force the task 8 interrupt.

6 INT7 Task 7 Interrupt Force

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to force the task 7 interrupt.

5 INT6 Task 6 Interrupt Force

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to force the task 6 interrupt.

4 INT5 Task 5 Interrupt Force

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to force the task 5 interrupt.

3 INT4 Task 4 Interrupt Force

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to force the task 4 interrupt.

2 INT3 Task 3 Interrupt Force

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to force the task 3 interrupt.

1 INT2 Task 2 Interrupt Force

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to force the task 2 interrupt.

0 INT1 Task 1 Interrupt Force

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to force the task 1 interrupt.
(1) This register is protected by EALLOW and the code security module.

26 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Register Set

4.3.9 Interrupt Flag Clear Register (MICLR)

Normally bits in the MIFR register are automatically cleared when a task begins. The interrupt flag clear
register can be used to instead manually clear bits in the interrupt flag (MIFR) register. Writing a 1 to a
MICLR bit will clear the corresponding bit in the MIFR register. Writes of 0 are ignored and reads always
return 0.

Figure 11. Interrupt Flag Clear Register (MICLR)
15 8

Reserved

R -0

7 6 5 4 3 2 1 0

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 11. Interrupt Flag Clear Register (MICLR) Field Descriptions

Bits Name Value Description (1)

15-8 Reserved Any writes to these bit(s) must always have a value of 0.

7 INT8 Task 8 Interrupt Flag Clear

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to clear the task 8 interrupt flag.

6 INT7 Task 7 Interrupt Flag Clear

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to clear the task 7 interrupt flag.

5 INT6 Task 6 Interrupt Flag Clear

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to clear the task 6 interrupt flag.

4 INT5 Task 5 Interrupt Flag Clear

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to clear the task 5 interrupt flag.

3 INT4 Task 4 Interrupt Flag Clear

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to clear the task 4 interrupt flag.

2 INT3 Task 3 Interrupt Flag Clear

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to clear the task 3 interrupt flag.

1 INT2 Task 2 Interrupt Flag Clear

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to clear the task 2 interrupt flag.

0 INT1 Task 1 Interrupt Flag Clear

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to clear the task 1 interrupt flag.
(1) This register is protected by EALLOW and the code security module.

27SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Register Set www.ti.com

4.3.10 Interrupt Overflow Flag Clear Register (MICLROVF)

Overflow flag bits in the MIOVF register are latched until manually cleared using the MICLROVF register.
Writing a 1 to a MICLROVF bit will clear the corresponding bit in the MIOVF register. Writes of 0 are
ignored and reads always return 0.

Figure 12. Interrupt Overflow Flag Clear Register (MICLROVF)
15 8

Reserved

R -0

7 6 5 4 3 2 1 0

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 12. Interrupt Overflow Flag Clear Register (MICLROVF) Field Descriptions

Bits Name Value Description (1)

15-8 Reserved Any writes to these bit(s) must always have a value of 0.

7 INT8 Task 8 Interrupt Overflow Flag Clear

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to clear the task 8 interrupt overflow flag.

6 INT7 Task 7 Interrupt Overflow Flag Clear

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to clear the task 7 interrupt overflow flag.

5 INT6 Task 6 Interrupt Overflow Flag Clear

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to clear the task 6 interrupt overflow flag.

4 INT5 Task 5 Interrupt Overflow Flag Clear

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to clear the task 5 interrupt overflow flag.

3 INT4 Task 4 Interrupt Overflow Flag Clear

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to clear the task 4 interrupt overflow flag.

2 INT3 Task 3 Interrupt Overflow Flag Clear

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to clear the task 3 interrupt overflow flag.

1 INT2 Task 2 Interrupt Overflow Flag Clear

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to clear the task 2 interrupt overflow flag.

0 INT1 Task 1 Interrupt Overflow Flag Clear

0 This bit always reads back 0 and writes of 0 have no effect.

1 Write a 1 to clear the task 1 interrupt overflow flag.
(1) This register is protected by EALLOW and the code security module.

28 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Register Set

4.4 Execution Registers

The CLA program counter is initialized by the appropriate MVECTx register when an interrupt is received
and a task begins execution. The MPC points to the instruction in the decode 2 (D2) stage of the CLA
pipeline. After a MSTOP operation, if no other tasks are pending, the MPC will remain pointing to the
MSTOP instruction. The MPC register can be read by the main C28x CPU for debug purposes. The main
CPU cannot write to MPC.

4.4.1 MPC Register

The MPC register is described in Figure 13 and described in Table 13.

Figure 13. Program Counter (MPC)
15 12 11 0

Reserved MPC

R-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13. Program Counter (MPC) Field Descriptions

Bits Name Value Description (1)

15-12 Reserved Any writes to these bit(s) must always have a value of 0.

11-0 MPC 0000 - Points to the instruction currently in the decode 2 phase of the CLA pipeline. The value is the
0FFF offset from the first address in the CLA program space.

(1) This register is protected by the code security module. The main CPU can read this register for debug purposes but it can not
write to it.

4.4.2 MSTF Register

The CLA status register (MSTF) reflects the results of different operations. These are the basic rules for
the flags:

• Zero and negative flags are cleared or set based on:

– floating-point moves to registers
– the result of compare, minimum, maximum, negative and absolute value operations
– the integer result of operations such as MMOV16, MAND32, MOR32, MXOR32, MCMP32,

MASR32, MLSR32
• Overflow and underflow flags are set by floating-point math instructions such as multiply, add, subtract

and 1/x. These flags may also be connected to the peripheral interrupt expansion (PIE) block on your
device. This can be useful for debugging underflow and overflow conditions within an application.

The MSTF register is shown in Figure 14 and described in Table 14.

Figure 14. CLA Status Register (MSTF)
31 24 23 16

Reserved RPC

R/W-0 R/W-0

15 12 11 10 9 8 7 6 5 4 3 2 1 0

RPC MEALLOW Reserved RND32 Reserved TF Reserved ZF NF LUF LVF

R/W-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

29SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Register Set www.ti.com

Table 14. CLA Status (MSTF) Register Field Descriptions

Bits Field Value Description (1)

31 - 24 Reserved 0 Reserved for future use

23 - 12 RPC Return program counter.

The RPC is used to save and restore the MPC address by the MCCNDD and MRCNDD operations.

11 MEALLOW This bit enables and disables CLA write access to EALLOW protected registers. This is independent of
the state of the EALLOW bit in the main CPU status register. This status bit can be saved and restored
by the MMOV32 STF instruction.

0 The CLA cannot write to EALLOW protected registers. This bit is cleared by the MEDIS CLA
instruction.

1 The CLA is allowed to write to EALLOW protected registers. This bit is set by the MEALLOW CLA
instruction.

10 Reserved 0 Any writes to these bit(s) must always have a value of 0.

9 RND32 Round 32-bit Floating-Point Mode

Use the MSETFLG and MMOV32 MSTF instructions to change the rounding mode.

0 If this bit is zero, the MMPYF32, MADDF32 and MSUBF32 instructions will round to zero (truncate).

1 If this bit is one, the MMPYF32, MADDF32 and MSUBF32 instructions will round to the nearest even
value.

8 - 7 Reserved 0 Reserved for future use

6 TF Test Flag

The TESTTF instruction can modify this flag based on the condition tested. The MSETFLG and
MMOV32 MSTF, mem32 instructions can also be used to modify this flag.

0 The condition tested with the TESTTF instruction is false.

1 The condition tested with the TESTTF instruction is true.

5 - 4 Reserved These two bits may change based on integer results. These flags are not, however, used by the CLA
and therefore marked as reserved.

3 ZF Zero Flag (2) (3)

• Instructions that modify this flag based on the floating-point value stored in the destination register:
MMOV32, MMOVD32, MOVDD32, ABSF32, MNEGF32

• Instructions that modify this flag based on the floating-point result of the operation:
MCMPF32, MMAXF32, and MMINF32

• Instructions that modify this flag based on the integer result of the operation:
MMOV16, MAND32, MOR32, MXOR32, MCMP32, MASR32, MLSR32 and MLSL32

The MSETFLG and MMOV32 MSTF, mem32 instructions can also be used to modify this flag

0 The value is not zero.

1 The value is zero.

2 NF Negative Flag (2) (3)

• Instructions that modify this flag based on the floating-point value stored in the destination register:
MMOV32, MMOVD32, MOVDD32, ABSF32, MNEGF32

• Instructions that modify this flag based on the floating-point result of the operation:
MCMPF32, MMAXF32, and MMINF32

• Instructions that modify this flag based on the integer result of the operation:
MMOV16, MAND32, MOR32, MXOR32, MCMP32, MASR32, MLSR32 and MLSL32

The MSETFLG and MMOV32 MSTF, mem32 instructions can also be used to modify this flag.

0 The value is not negative.

1 The value is negative.

(1) This register is protected by the code security module. The main CPU can read this register for debug purposes but it can not write to it.
(2) A negative zero floating-point value is treated as a positive zero value when configuring the ZF and NF flags.
(3) A DeNorm floating-point value is treated as a positive zero value when configuring the ZF and NF flags.

30 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Register Set

Table 14. CLA Status (MSTF) Register Field Descriptions (continued)

Bits Field Value Description (1)

1 LUF Latched Underflow Flag

The following instructions will set this flag to 1 if an underflow occurs: MMPYF32, MADDF32,
MSUBF32, MMACF32, MEINVF32, MEISQRTF32

The MSETFLG and MMOV32 MSTF, mem32 instructions can also be used to modify this flag.

0 An underflow condition has not been latched.

1 An underflow condition has been latched.

0 LVF Latched Overflow Flag

The following instructions will set this flag to 1 if an overflow occurs: MMPYF32, MADDF32, MSUBF32,
MMACF32, MEINVF32, MEISQRTF32

The MSETFLG and MMOV32 MSTF, mem32 instructions can also be used to modify this flag.

0 An overflow condition has not been latched.

1 An overflow condition has been latched.

31SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Pipeline www.ti.com

5 Pipeline

This section describes the CLA pipeline stages and presents cases where pipeline alignment must be
considered.

5.1 Pipeline Overview

The CLA pipeline is very similar to the C28x pipeline. The pipeline has eight stages:

• Fetch 1 (F1)
During the F1 stage the program read address is placed on the CLA program address bus.

• Fetch 2 (F2)
During the F2 stage the instruction is read using the CLA program data bus.

• Decode 1 (D1)
During D1 the instruction is decoded.

• Decode 2 (D2)
Generate the data read address. Changes to MAR0 and MAR1 due to post-increment using indirect
addressing takes place in the D2 phase. Conditional branch decisions are also made at this stage
based on the MSTF register flags.

• Read 1 (R1)
Place the data read address on the CLA data-read address bus. If a memory conflict exists, the R1
stage will be stalled.

• Read 2 (R2)
Read the data value using the CLA data read data bus.

• Execute (EXE)
Execute the operation. Changes to MAR0 and MAR1 due to loading an immediate value or value from
memory take place in this stage.

• Write (W)
Place the write address and write data on the CLA write data bus. If a memory conflict exists, the W
stage will be stalled.

5.2 CLA Pipeline Alignment

The majority of the CLA instructions do not require any special pipeline considerations. This section lists
the few operations that do require special consideration.

• Write Followed by Read
In both the CLA pipeline the read operation occurs before the write. This means that if a read operation
immediately follows a write, then the read will complete first as shown in Table 15. In most cases this
does not cause a problem since the contents of one memory location does not depend on the state of
another. For accesses to peripherals where a write to one location can affect the value in another
location the code must wait for the write to complete before issuing the read as shown in Table 16.
This behavior is different for the 28x CPU. For the 28x CPU any write followed by read to the same
location is protected by what is called write-followed-by-read protection. This protection automatically
stalls the pipeline so that the write will complete before the read. In addition some peripheral frames
are protected such that a 28x CPU write to one location within the frame will always complete before a
read to the frame. The CLA does not have this protection mechanism. Instead the code must wait to
perform the read.

32 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Pipeline

Table 15. Write Followed by Read - Read Occurs First

Instruction F1 F2 D1 D2 R1 R2 E W

I1 MMOV16 @Reg1, MR3 I1

I2 MMOV16 MR2, @Reg2 I2 I1

I2 I1

I2 I1

I2 I1

I2 I1

I2 I1

I2 I1

Table 16. Write Followed by Read - Write Occurs First

Instruction F1 F2 D1 D2 R1 R2 E W

I1 MMOV16 @Reg1, MR3 I1

I2 I2 I1

I3 I3 I2 I1

I4 I4 I3 I2 I1

I5 MMOV16 MR2, @Reg2 I5 I4 I3 I2 I1

I5 I4 I3 I2 I1

I5 I4 I3 I2 I1

I5 I4 I3 I2 I1

I5 I4 I3

I5 I4

I5

• Delayed Conditional instructions: MBCNDD, MCCNDD and MRCNDD
Referring to Example 1, the following applies to delayed conditional instructions:

– I1
I1 is the last instruction that can effect the CNDF flags for the branch, call or return instruction. The
CNDF flags are tested in the D2 phase of the pipeline. That is, a decision is made whether to
branch or not when MBCNDD, MCCNDD or MRCNDD is in the D2 phase.

– I2, I3 and I4
The three instructions proceeding MBCNDD can change MSTF flags but will have no effect on
whether the MBCNDD instruction branches or not. This is because the flag modification will occur
after the D2 phase of the branch, call or return instruction. These three instructions must not be a
MSTOP, MDEBUGSTOP, MBCNDD, MCCNDD or MRCNDD.

– I5, I6 and I7
The three instructions following a branch, call or return are always executed irrespective of whether
the condition is true or not. These instructions must not be MSTOP, MDEBUGSTOP, MBCNDD,
MCCNDD or MRCNDD.

For a more detailed description refer to the functional description for MBCNDD, MCCNDD and
MRCNDD.

33SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Pipeline www.ti.com

Example 1. Code Fragment For MBCNDD, MCCNDD or MRCNDD

<Instruction 1> ; I1 Last instruction that can affect flags for
; the branch, call or return operation

<Instruction 2> ; I2 Cannot be stop, branch, call or return
<Instruction 3> ; I3 Cannot be stop, branch, call or return
<Instruction 4> ; I4 Cannot be stop, branch, call or return

<branch/call/ret> ; MBCNDD, MCCNDD or MRCNDD

; I5-I7: Three instructions after are always
; executed whether the branch/call or return is
; taken or not

<Instruction 5> ; I5 Cannot be stop, branch, call or return
<Instruction 6> ; I6 Cannot be stop, branch, call or return
<Instruction 7> ; I7 Cannot be stop, branch, call or return

<Instruction 8> ; I8
<Instruction 9> ; I9
....

• Stop or Halting a Task: MSTOP and MDEBUGSTOP
The MSTOP and MDEBUGSTOP instructions cannot be placed three instructions before or after a
conditional branch, call or return instruction (MBCNDD, MCCNDD or MRCNDD). Refer to Example 1.
To single-step through a branch/call or return, insert the MDEBUGSTOP at least four instructions back
and step from there.

• Loading MAR0 or MAR1
A load of auxiliary register MAR0 or MAR1 will occur in the EXE phase of the pipeline. Any post
increment of MAR0 or MAR1 using indirect addressing will occur in the D2 phase of the pipeline.
Referring to Example 2, the following applies when loading the auxiliary registers:

– I1 and I2
The two instructions following the load instruction will use the value in MAR0 or MAR1 before the
update occurs.

– I3
Loading of an auxiliary register occurs in the EXE phase while updates due to post-increment
addressing occur in the D2 phase. Thus I3 cannot use the auxiliary register or there will be a
conflict. In the case of a conflict, the update due to address-mode post increment will win and the
auxiliary register will not be updated with #_X.

– I4
Starting with the 4th instruction MAR0 or MAR1 will have the new value.

Example 2. Code Fragment for Loading MAR0 or MAR1

; Assume MAR0 is 50 and #_X is 20

MMOVI16 MAR0, #_X ; Load MAR0 with address of X (20)
<Instruction 1> ; I1 Will use the old value of MAR0 (50)
<Instruction 2> ; I2 Will use the old value of MAR0 (50)
<Instruction 3> ; I3 Cannot use MAR0
<Instruction 4> ; I4 Will use the new value of MAR0 (20)
<Instruction 5> ; I5 Will use the new value of MAR0 (20
....

5.2.1 ADC Early Interrupt to CLA Response

The 2803x ADC offers the option to generate an early interrupt pulse when the ADC begins conversion.

34 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Pipeline

This option is selected by setting the ADCCTL1[INTPULSEPOS] bit as documented in the
TMS320x2802x, x2803x Piccolo Analog-to-Digital Converter and Comparator Reference Guide
(SPRUGE5). If this option is used to start a CLA task then the CLA will be able to read the result as soon
as the conversion completes and the ADC result register updates. This just-in-time sampling along with
the low interrupt response of the CLA enable faster system response and higher frequency control loops.

The timing for the ADC conversion is shown in the ADC Reference Guide timing diagrams. From a CLA
perspective, the pipeline activity is shown in Table 17. The 8th instruction is in the R2 phase just in time to
read the result register. While the first 7 instructions in the task (I1 to I7) will enter the R2 phase of the
pipeline too soon to read the conversion, they can be efficiently used for pre-processing calculations
needed by the task.

Table 17. ADC to CLA Early Interrupt Response

ADC Activity CLA Activity F1 F2 D1 D2 R1 R2 E W

Sample

Sample

...

Sample

Conversion (1) Interrupt Received

Conversion (2) Task Startup

Conversion (3) Task Startup

Conversion (4) I1 I1

Conversion (5) I2 I2 I1

Conversion (6) I3 I3 I2 I1

Conversion (7) I4 I4 I3 I2 I1

Conversion (8) I5 I5 I4 I3 I2 I1

Conversion (9) I6 I6 I5 I4 I3 I2 I1

Conversion (10) I7 I7 I6 I5 I4 I3 I2

Conversion (11) I8 Read ADC RESULT I8 I7 I6 I5 I4 I3

Conversion (12) I8 I7 I6 I5 I4

Conversion (13) I8 I7 I6 I5

Conversion Complete I8 I7 I6

RESULT Latched I8 I7

RESULT Available I8

5.3 Parallel Instructions

Parallel instructions are single opcodes that perform two operations in parallel. The following types of
parallel instructions are available: math operation in parallel with a move operation, or two math
operations in parallel. Both operations complete in a single cycle and there are no special pipeline
alignment requirements.

Example 3. Math Operation with Parallel Load

; MADDF32 || MMOV32 instruction: 32-bit floating-point add with parallel move
; MADDF32 is a 1 cycle operation
; MMOV32 is a 1 cycle operation

MADDF32 MR0, MR1, #2 ; MR0 = MR1 + 2,
|| MMOV32 MR1, @Val ; MR1 gets the contents of Val

; <-- MMOV32 completes here (MR1 is valid)
; <-- DDF32 completes here (MR0 is valid)

MMPYF32 MR0, MR0, MR1 ; Any instruction, can use MR1 and/or MR0

Example 4. Multiply with Parallel Add

35SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spruge5

Pipeline www.ti.com

Example 4. Multiply with Parallel Add (continued)
; MMPYF32 || MADDF32 instruction: 32-bit floating-point multiply with parallel add
; MMPYF32 is a 1 cycle operation
; MADDF32 is a 1 cycle operation

MMPYF32 MR0, MR1, MR3 ; MR0 = MR1 * MR3
|| MADDF32 MR1, MR2, MR0 ; MR1 = MR2 + MR0 (Uses value of MR0 before MMPYF32)

; <-- MMPYF32 and MADDF32 complete here (MR0 and MR1 are valid)
MMPYF32 MR1, MR1, MR0 ; Any instruction, can use MR1 and/or MR0

36 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

6 Instruction Set

This section describes the assembly language instructions of the control law accellerator. Also described
are parallel operations, conditional operations, resource constraints, and addressing modes. The
instructions listed here are independant from C28x and C28x+FPU instruction sets.

6.1 Instruction Descriptions

This section gives detailed information on the instruction set. Each instruction may present the following
information:

• Operands
• Opcode
• Description
• Exceptions
• Pipeline
• Examples
• See also

The example INSTRUCTION is shown to familiarize you with the way each instruction is described. The
example describes the kind of information you will find in each part of the individual instruction description
and where to obtain more information. CLA instructions follow the same format as the C28x; the source
operand(s) are always on the right and the destination operand(s) are on the left.

The explanations for the syntax of the operands used in the instruction descriptions for the C28x CLA are
given in Table 18.

Table 18. Operand Nomenclature

Symbol Description

#16FHi 16-bit immediate (hex or float) value that represents the upper 16-bits of an IEEE 32-bit floating-point value.
Lower 16-bits of the mantissa are assumed to be zero.

#16FHiHex 16-bit immediate hex value that represents the upper 16-bits of an IEEE 32-bit floating-point value.
Lower 16-bits of the mantissa are assumed to be zero.

#16FLoHex A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit floating-point value

#32Fhex 32-bit immediate value that represents an IEEE 32-bit floating-point value

#32F Immediate float value represented in floating-point representation

#0.0 Immediate zero

#SHIFT Immediate value of 1 to 32 used for arithmetic and logical shifts.

addr Opcode field indicating the addressing mode

CNDF Condition to test the flags in the MSTF register

FLAG Selected flags from MSTF register (OR) 8 bit mask indicating which floating-point status flags to change

MAR0 auxiliary register 0

MAR1 auxiliary register 1

MARx Either MAR0 or MAR1

mem16 16-bit memory location accessed using direct or indirect addressing modes

mem32 32-bit memory location accessed using direct or indirect addressing modes

MRa MR0 to MR3 registers

MRb MR0 to MR3 registers

MRc MR0 to MR3 registers

MRd MR0 to MR3 registers

MRe MR0 to MR3 registers

MRf MR0 to MR3 registers

MSTF CLA Floating-point Status Register

shift Opcode field indicating the number of bits to shift.

VALUE Flag value of 0 or 1 for selected flag (OR) 8 bit mask indicating the flag value; 0 or 1

37SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

Each instruction has a table that gives a list of the operands and a short description. Instructions always
have their destination operand(s) first followed by the source operand(s).

Table 19. INSTRUCTION dest, source1, source2 Short Description

Description

dest1 Description for the 1st operand for the instruction

source1 Description for the 2nd operand for the instruction

source2 Description for the 3rd operand for the instruction

Opcode This section shows the opcode for the instruction

Description Detailed description of the instruction execution is described. Any constraints on the operands imposed by
the processor or the assembler are discussed.

Restrictions Any constraints on the operands or use of the instruction imposed by the processor are discussed.

Pipeline This section describes the instruction in terms of pipeline cycles as described in Section 5

Example Examples of instruction execution. If applicable, register and memory values are given before and after
instruction execution. Some examples are code fragments while other examples are full tasks that assume
the CLA is correctly configured and the main CPU has passed it data.

Operands Each instruction has a table that gives a list of the operands and a short description. Instructions always
have their destination operand(s) first followed by the source operand(s).

38 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

6.2 Addressing Modes and Encoding

The CLA uses the same address to access data and registers as the main CPU. For example if the main
CPU accesses an ePWM register at address 0x00 6800, then the CLA will access it using address
0x6800. Since all CLA accessible memory and registers are within the low 64k x 16 of memory, only the
low 16-bits of the address are used by the CLA.

To address the CLA data memory, message RAMs and shared peripherals, the CLA supports two
addressing modes:
• Direct addressing mode: Uses the address of the variable or register directly.
• Indirect addressing with 16-bit post increment. This mode uses either XAR0 or XAR1.

The CLA does not use a data page pointer or a stack pointer. The two addressing modes are encoded as
shown in Table 20.

Table 20. Addressing Modes

Addressing Mode 'addr' Opcode Description
Field
Encode (1)

@dir 0000 Direct Addressing Mode

Example 1: MMOV32 MR1, @_VarA

Example 2: MMOV32 MR1, @_EPwm1Regs.CMPA.all

In this case the 'mmmm mmmm mmmm mmmm' opcode field will be populated with the
16-bit address of the variable. This is the low 16-bits of the address that you would use to
access the variable using the main CPU.

For example @_VarA will populate the address of the variable VarA. and
@_EPwm1Regs.CMPA.all will populate the address of the CMPA register.

*MAR0[#imm16]++ 0001 MAR0 Indirect Addressing with 16-bit Immediate Post Increment

*MAR1[#imm16]++ 0010 MAR1 Indirect Addressing with 16-bit Immediate Post Increment

addr = MAR0 (or MAR1) Access memory using the address stored in MAR0 (or MAR1).
MAR0 (or MAR1) += Then post increment MAR0 (or MAR1) by #imm16.
#imm16

Example 1: MMOV32 MR0, *MAR0[2]++

Example 2: MMOV32 MR1, *MAR1[-2]++

For a post increment of 0 the assembler will accept both *MAR0 and *MAR0[0]++.

The 'mmmm mmmm mmmm mmmm' opcode field will be populated with the signed 16-bit
pointer offset. For example if #imm16 is 2, then the opcode field will be 0x0002. Likewise if
#imm16 is -2, then the opcode field will be 0xFFFE.

If addition of the 16-bit immediate causes overflow, then the value will wrap around on a
16-bit boundary.

(1) Values not shown are reserved.

Encoding for the shift fields in the MASR32, MLSR32 and MLSL32 instructions is shown in Table 21

Table 21. Shift Field Encoding

Shift Value 'shift' Opcode
Field Encode

1 0000

2 0001

3 0010

....

32 1111

Table 22 shows the condition field encoding for conditional instructions such as MNEGF, MSWAPF,
MBCNDD, MCCNDD and MRCNDD

39SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

Table 22. Condition Field Encoding

Encode (1) CNDF Description MSTF Flags Tested

0000 NEQ Not equal to zero ZF == 0

0001 EQ Equal to zero ZF == 1

0010 GT Greater than zero ZF == 0 AND NF == 0

0011 GEQ Greater than or equal to zero NF == 0

0100 LT Less than zero NF == 1

0101 LEQ Less than or equal to zero ZF == 1 OR NF == 1

1010 TF Test flag set TF == 1

1011 NTF Test flag not set TF == 0

1100 LU Latched underflow LUF == 1

1101 LV Latched overflow LVF == 1

1110 UNC Unconditional None

1111 UNCF (2) Unconditional with flag modification None
(1) Values not shown are reserved.
(2) This is the default operation if no CNDF field is specified. This condition will allow the ZF and NF flags to be modified when a

conditional operation is executed. All other conditions will not modify these flags.

40 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

6.3 Instructions

The instructions are listed alphabetically, preceded by a summary.
Table 23. Instructions

Title .. Page

MABSF32 MRa, MRb —32-bit Floating-Point Absolute Value .. 43
MADD32 MRa, MRb, MRc —32-bit Integer Add.. 44
MADDF32 MRa, #16FHi, MRb —32-bit Floating-Point Addition ... 45
MADDF32 MRa, MRb, MRc —32-bit Floating-Point Addition ... 48
MADDF32 MRd, MRe, MRf||MMOV32 mem32, MRa —32-bit Floating-Point Addition with Parallel Move................ 49
MADDF32 MRd, MRe, MRf ||MMOV32 MRa, mem32 —32-bit Floating-Point Addition with Parallel Move................ 50
MAND32 MRa, MRb, MRc —Bitwise AND .. 52
MASR32 MRa, #SHIFT —Arithmetic Shift Right .. 53
MBCNDD 16BitDest {, CNDF} —Branch Conditional Delayed ... 54
MCCNDD 16BitDest {, CNDF} —Call Conditional Delayed... 59
MCMP32 MRa, MRb —32-bit Integer Compare for Equal, Less Than or Greater Than....................................... 63
MCMPF32 MRa, MRb —32-bit Floating-Point Compare for Equal, Less Than or Greater Than............................. 64
MCMPF32 MRa, #16FHi —32-bit Floating-Point Compare for Equal, Less Than or Greater Than.......................... 65
MDEBUGSTOP —Debug Stop Task .. 67
MEALLOW —Enable CLA Write Access to EALLOW Protected Registers .. 68
MEDIS —Disable CLA Write Access to EALLOW Protected Registers .. 69
MEINVF32 MRa, MRb —32-bit Floating-Point Reciprocal Approximation... 70
MEISQRTF32 MRa, MRb —32-bit Floating-Point Square-Root Reciprocal Approximation 72
MF32TOI16 MRa, MRb —Convert 32-bit Floating-Point Value to 16-bit Integer ... 74
MF32TOI16R MRa, MRb —Convert 32-bit Floating-Point Value to 16-bit Integer and Round 75
MF32TOI32 MRa, MRb —Convert 32-bit Floating-Point Value to 32-bit Integer ... 76
MF32TOUI16 MRa, MRb —Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer 77
MF32TOUI16R MRa, MRb —Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round 78
MF32TOUI32 MRa, MRb —Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer 79
MFRACF32 MRa, MRb —Fractional Portion of a 32-bit Floating-Point Value .. 80
MI16TOF32 MRa, MRb —Convert 16-bit Integer to 32-bit Floating-Point Value .. 81
MI16TOF32 MRa, mem16 —Convert 16-bit Integer to 32-bit Floating-Point Value ... 82
MI32TOF32 MRa, mem32 —Convert 32-bit Integer to 32-bit Floating-Point Value ... 83
MI32TOF32 MRa, MRb —Convert 32-bit Integer to 32-bit Floating-Point Value .. 84
MLSL32 MRa, #SHIFT —Logical Shift Left.. 85
MLSR32 MRa, #SHIFT —Logical Shift Right.. 86

MMACF32 MR3, MR2, MRd, MRe, MRf ||MMOV32 MRa, mem32 —32-bit Floating-Point Multiply and Accumulate with
Parallel Move .. 87

MMAXF32 MRa, MRb —32-bit Floating-Point Maximum .. 90
MMAXF32 MRa, #16FHi —32-bit Floating-Point Maximum ... 91
MMINF32 MRa, MRb —32-bit Floating-Point Minimum .. 92
MMINF32 MRa, #16FHi —32-bit Floating-Point Minimum ... 93
MMOV16 MARx, mem16 —Load MAR1 with 16-bit Value.. 97
MMOV16 mem16, MARx —Move 16-bit Auxiliary Register Contents to Memory.. 99
MMOV16 mem16, MRa —Move 16-bit Floating-Point Register Contents to Memory.. 100
MMOV32 mem32, MRa —Move 32-bit Floating-Point Register Contents to Memory 101
MMOV32 mem32, MSTF —Move 32-bit MSTF Register to Memory ... 102
MMOV32 MRa, mem32 {, CNDF} —Conditional 32-bit Move ... 103
MMOV32 MRa, MRb {, CNDF} —Conditional 32-bit Move .. 105
MMOV32 MSTF, mem32 —Move 32-bit Value from Memory to the MSTF Register .. 107
MMOVD32 MRa, mem32 —Move 32-bit Value from Memory with Data Copy.. 108

41SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

Table 23. Instructions (continued)

MMOVIZ MRa, #16FHi —Load the Upper 16-bits of a 32-bit Floating-Point Register 112
MMOVZ16 MRa, mem16 —Load MRx with 16-bit Value .. 113
MMPYF32 MRa, MRb, MRc —32-bit Floating-Point Multiply .. 115
MMPYF32 MRa, #16FHi, MRb —32-bit Floating-Point Multiply .. 116
MMPYF32 MRa, MRb, #16FHi —32-bit Floating-Point Multiply .. 118
MMPYF32 MRa, MRb, MRc||MADDF32 MRd, MRe, MRf —32-bit Floating-Point Multiply with Parallel Add 120
MMPYF32 MRd, MRe, MRf ||MMOV32 MRa, mem32 —32-bit Floating-Point Multiply with Parallel Move............... 122
MMPYF32 MRd, MRe, MRf ||MMOV32 mem32, MRa —32-bit Floating-Point Multiply with Parallel Move............... 124
MMPYF32 MRa, MRb, MRc ||MSUBF32 MRd, MRe, MRf —32-bit Floating-Point Multiply with Parallel Subtract 125
MNEGF32 MRa, MRb{, CNDF} —Conditional Negation ... 126
MNOP —No Operation.. 128
MOR32 MRa, MRb, MRc —Bitwise OR .. 129
MRCNDD {CNDF} —Return Conditional Delayed... 130
MSETFLG FLAG, VALUE —Set or clear selected floating-point status flags .. 133
MSTOP —Stop Task ... 134
MSUB32 MRa, MRb, MRc —32-bit Integer Subtraction.. 136
MSUBF32 MRa, MRb, MRc —32-bit Floating-Point Subtraction ... 137
MSUBF32 MRa, #16FHi, MRb —32-bit Floating Point Subtraction... 138
MSUBF32 MRd, MRe, MRf ||MMOV32 MRa, mem32 —32-bit Floating-Point Subtraction with Parallel Move.......... 139
MSUBF32 MRd, MRe, MRf ||MMOV32 mem32, MRa —32-bit Floating-Point Subtraction with Parallel Move.......... 141
MSWAPF MRa, MRb {, CNDF} —Conditional Swap .. 142
MTESTTF CNDF —Test MSTF Register Flag Condition ... 144
MUI16TOF32 MRa, mem16 —Convert unsigned 16-bit integer to 32-bit floating-point value 146
MUI16TOF32 MRa, MRb —Convert unsigned 16-bit integer to 32-bit floating-point value 147
MUI32TOF32 MRa, mem32 —Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value 148
MUI32TOF32 MRa, MRb —Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value................................ 149
MXOR32 MRa, MRb, MRc —Bitwise Exclusive Or ... 150

42 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MABSF32 MRa, MRb 32-bit Floating-Point Absolute Value

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 0000 bbaa
MSW: 0111 1110 0010 0000

Description The absolute value of MRb is loaded into MRa. Only the sign bit of the operand is
modified by the MABSF32 instruction.
if (MRb < 0) {MRa = -MRb};

else {MRa = MRb};

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

The MSTF register flags are modified as follows:
NF = 0;
ZF = 0;
if (MRa(30:23) == 0) ZF = 1;

Pipeline This is a single-cycle instruction.

Example MMOVIZ MR0, #-2.0 ; MR0 = -2.0 (0xC0000000)
MABSF32 MR0, MR0 ; MR0 = 2.0 (0x40000000), ZF = NF = 0

MMOVIZ MR0, #5.0 ; MR0 = 5.0 (0x40A00000)
MABSF32 MR0, MR0 ; MR0 = 5.0 (0x40A00000), ZF = NF = 0

MMOVIZ MR0, #0.0 ; MR0 = 0.0
MABSF32 MR0, MR0 ; MR0 = 0.0 ZF = 1, NF = 0

See also MNEGF32 MRa, MRb {, CNDF}

43SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MADD32 MRa, MRb, MRc 32-bit Integer Add

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point destination register (MR0 to MR3)

MRc CLA floating-point destination register (MR0 to MR3)

Opcode LSW: 0000 0000 000cc bbaa
MSW: 0111 1110 1100 0000

Description 32-bit integer addition of MRb and MRc.
MARa(31:0) = MARb(31:0) + MRc(31:0);

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

The MSTF register flags are modified based on the integer results of the operation.
NF = MRa(31);
ZF = 0;
if(MRa(31:0) == 0) { ZF = 1; };

Pipeline This is a single-cycle instruction.

Example ; Given A = (int32)1
; B = (int32)2
; C = (int32)-7
;
; Calculate Y2 = A + B + C
;
_Cla1Task1:

MMOV32 MR0, @_A ; MR0 = 1 (0x00000001)
MMOV32 MR1, @_B ; MR1 = 2 (0x00000002)
MMOV32 MR2, @_C ; MR2 = -7 (0xFFFFFFF9)
MADD32 MR3, MR0, MR1 ; A + B
MADD32 MR3, MR2, MR3 ; A + B + C = -4 (0xFFFFFFFC)
MMOV32 @_y2, MR3 ; Store y2
MSTOP ; end of task

See also MAND32 MRa, MRb, MRc
MASR32 MRa, #SHIFT
MLSL32 MRa, #SHIFT
MLSR32 MRa, #SHIFT
MOR32 MRa, MRb, MRc
MXOR32 MRa, MRb, MRc
MSUB32 MRa, MRb, MRc

44 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MADDF32 MRa, #16FHi, MRb 32-bit Floating-Point Addition

Operands
MRa CLA floating-point destination register (MR0 to MR3)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: IIII IIII IIII IIII
MSW: 0111 0111 1100 bbaa

Description Add MRb to the floating-point value represented by the immediate operand. Store the
result of the addition in MRa.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(0xBFC00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFC0.
MRa = MRb + #16FHi:0;

This instruction can also be written as MADDF32 MRa, MRb, #16FHi.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MADDF32 generates an underflow condition.
• LVF = 1 if MADDF32 generates an overflow condition.

Pipeline This is a single-cycle instruction.

Example ; Add to MR1 the value 2.0 in 32-bit floating-point format
; Store the result in MR0

MADDF32 MR0, #2.0, MR1 ; MR0 = 2.0 + MR1

; Add to MR3 the value -2.5 in 32-bit floating-point format
; Store the result in MR2

MADDF32 MR2, #-2.5, MR3 ; MR2 = -2.5 + MR3

; Add to MR3 the value 0x3FC00000 (1.5)
; Store the result in MR3

MADDF32 MR3, #0x3FC0, MR3 ; MR3 = 1.5 + MR3

See also MADDF32 MRa, MRb, #16FHi
MADDF32 MRa, MRb, MRc
MADDF32 MRd, MRe, MRf || MMOV32 MRa, mem32
MADDF32 MRd, MRe, MRf || MMOV32 mem32, MRa
MMPYF32 MRa, MRb, MRc || MADDF32 MRd, MRe, MRf

45SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MADDF32 MRa, MRb, #16FHi

Operands

MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.

Opcode LSW: IIII IIII IIII IIII
MSW: 0111 0111 1100 bbaa

Description Add MRb to the floating-point value represented by the immediate operand. Store the
result of the addition in MRa.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(0xBFC00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFC0.
MRa = MRb + #16FHi:0;

This instruction can also be written as MADDF32 MRa, #16FHi, MRb.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MADDF32 generates an underflow condition.
• LVF = 1 if MADDF32 generates an overflow condition.

Pipeline This is a single-cycle instruction.

Example 1 ; X is an array of 32-bit floating-point values
; Find the maximum value in an array X
; and store it in Result
;
_Cla1Task1:

MMOVI16 MAR1,#_X ; Start address
MUI16TOF32 MR0, @_len ; Length of the array
MNOP ; delay for MAR1 load
MNOP ; delay for MAR1 load
MMOV32 MR1, *MAR1[2]++ ; MR1 = X0

LOOP
MMOV32 MR2, *MAR1[2]++ ; MR2 = next element
MMAXF32 MR1, MR2 ; MR1 = MAX(MR1, MR2)
MADDF32 MR0, MR0, #-1.0 ; Decrement the counter
MCMPF32 MR0 #0.0 ; Set/clear flags for MBCNDD
MNOP
MNOP
MNOP
MBCNDD LOOP, NEQ ; Branch if not equal to zero
MMOV32 @_Result, MR1 ; Always executed
MNOP ; Always executed
MNOP ; Always executed
MSTOP ; End of task

46 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

Example 2 ; Show the basic operation of MADDF32
;
; Add to MR1 the value 2.0 in 32-bit floating-point format
; Store the result in MR0

MADDF32 MR0, MR1, #2.0 ; MR0 = MR1 + 2.0

; Add to MR3 the value -2.5 in 32-bit floating-point format
; Store the result in MR2

MADDF32 MR2, MR3, #-2.5 ; MR2 = MR3 + (-2.5)

; Add to MR0 the value 0x3FC00000 (1.5)
; Store the result in MR0

MADDF32 MR0, MR0, #0x3FC0 ; MR0 = MR0 + 1.5

See also MADDF32 MRa, #16FHi, MRb
MADDF32 MRa, MRb, MRc
MADDF32 MRd, MRe, MRf || MMOV32 MRa, mem32
MADDF32 MRd, MRe, MRf || MMOV32 mem32, MRa
MMPYF32 MRa, MRb, MRc || MADDF32 MRd, MRe, MRf

47SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MADDF32 MRa, MRb, MRc 32-bit Floating-Point Addition

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

MRc CLA floating-point source register (MR0 to MR3)

Opcode LSW: 000 0000 00cc bbaa
MSW: 0111 1100 0010 0000

Description Add the contents of MRc to the contents of MRb and load the result into MRa.
MRa = MRb + MRc;

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MADDF32 generates an underflow condition.
• LVF = 1 if MADDF32 generates an overflow condition.

Pipeline This is a single-cycle instruction.

Example ; Given M1, X1 and B1 are 32-bit floating point numbers
; Calculate Y1 = M1*X1+B1
;
_Cla1Task1:

MMOV32 MR0,@M1 ; Load MR0 with M1
MMOV32 MR1,@X1 ; Load MR1 with X1
MMPYF32 MR1,MR1,MR0 ; Multiply M1*X1

|| MMOV32 MR0,@B1 ; and in parallel load MR0 with B1
MADDF32 MR1,MR1,MR0 ; Add M*X1 to B1 and store in MR1
MMOV32 @Y1,MR1 ; Store the result
MSTOP ; end of task

See also MADDF32 MRa, #16FHi, MRb
MADDF32 MRa, MRb, #16FHi
MADDF32 MRd, MRe, MRf || MMOV32 MRa, mem32
MADDF32 MRd, MRe, MRf || MMOV32 mem32, MRa
MMPYF32 MRa, MRb, MRc || MADDF32 MRd, MRe, MRf

48 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MADDF32 MRd, MRe, MRf||MMOV32 mem32, MRa 32-bit Floating-Point Addition with Parallel Move

Operands
MRd CLA floating-point destination register for the MADDF32 (MR0 to MR3)

MRe CLA floating-point source register for the MADDF32 (MR0 to MR3)

MRf CLA floating-point source register for the MADDF32 (MR0 to MR3)

mem32 32-bit memory location accessed using direct or indirect addressing. This will be the
destination of the MMOV32.

MRa CLA floating-point source register for the MMOV32 (MR0 to MR3)

Opcode LSW: mmmm mmmm mmmm mmmm
MSW: 0101 ffee ddaa addr

Description Perform an MADDF32 and a MMOV32 in parallel. Add MRf to the contents of MRe and
store the result in MRd. In parallel move the contents of MRa to the 32-bit location
mem32.
MRd = MRe + MRf;
[mem32] = MRa;

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MADDF32 generates an underflow condition.
• LVF = 1 if MADDF32 generates an overflow condition.

Pipeline Both MADDF32 and MMOV32 complete in a single cycle.

Example ; Given A, B and C are 32-bit floating-point numbers
; Calculate Y2 = (A * B)
; Y3 = (A * B) + C
;
_Cla1Task2:

MMOV32 MR0, @_A ; Load MR0 with A
MMOV32 MR1, @_B ; Load MR1 with B
MMPYF32 MR1, MR1, MR0 ; Multiply A*B

|| MMOV32 MR0, @_C ; and in parallel load MR0 with C
MADDF32 MR1, MR1, MR0 ; Add (A*B) to C

|| MMOV32 @_Y2, MR1 ; and in parallel store A*B
MMOV32 @_Y3, MR1 ; Store the A*B + C
MSTOP ; end of task

See also MADDF32 MRa, #16FHi, MRb
MADDF32 MRa, MRb, #16FHi
MADDF32 MRa, MRb, MRc
MMPYF32 MRa, MRb, MRc || MADDF32 MRd, MRe, MRf
MADDF32 MRd, MRe, MRf || MMOV32 MRa, mem32

49SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MADDF32 MRd, MRe, MRf ||MMOV32 MRa, mem32 32-bit Floating-Point Addition with Parallel Move

Operands
MRd CLA floating-point destination register for the MADDF32 (MR0 to MR3).

MRd cannot be the same register as MRa.

MRe CLA floating-point source register for the MADDF32 (MR0 to MR3)

MRf CLA floating-point source register for the MADDF32 (MR0 to MR3)

MRa CLA floating-point destination register for the MMOV32 (MR0 to MR3).
MRa cannot be the same register as MRd.

mem32 32-bit memory location accessed using direct or indirect addressing. This is the source
for the MMOV32.

Opcode LSW: mmmm mmmm mmmm mmmm
MSW: 0001 ffee ddaa addr

Description Perform an MADDF32 and a MMOV32 operation in parallel. Add MRf to the contents of
MRe and store the result in MRd. In parallel move the contents of the 32-bit location
mem32 to MRa.
MRd = MRe + MRf;
MRa = [mem32];

Restrictions The destination register for the MADDF32 and the MMOV32 must be unique. That is,
MRa and MRd cannot be the same register.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MADDF32 generates an underflow condition.
• LVF = 1 if MADDF32 generates an overflow condition.

The MMOV32 Instruction will set the NF and ZF flags as follows:
NF = MRa(31);
ZF = 0;
if(MRa(30:23) == 0) { ZF = 1; NF = 0; };

Pipeline The MADDF32 and the MMOV32 both complete in a single cycle.

Example 1 ; Given A, B and C are 32-bit floating-point numbers
; Calculate Y1 = A + 4B
; Y2 = A + C
;
_Cla1Task1:

MMOV32 MR0, @A ; Load MR0 with A
MMOV32 MR1, @B ; Load MR1 with B
MMPYF32 MR1, MR1, #4.0 ; Multiply 4 * B

|| MMOV32 MR2, @C and in parallel load C
MADDF32 MR3, MR0, MR1 ; Add A + 4B
MADDF32 MR3, MR0, MR2 ; Add A + C

|| MMOV32 @Y1, MR3 ; and in parallel store A+4B
MMOV32 @Y2, MR3 ; store A + C MSTOP

; end of task

50 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

Example 2 ; Given A, B and C are 32-bit floating-point numbers
; Calculate Y3 = (A + B)
; Y4 = (A + B) * C
;
_Cla1Task2:

MMOV32 MR0, @A ; Load MR0 with A
MMOV32 MR1, @B ; Load MR1 with B
MADDF32 MR1, MR1, MR0 ; Add A+B

|| MMOV32 MR0, @C ; and in parallel load MR0 with C
MMPYF32 MR1, MR1, MR0 ; Multiply (A+B) by C

|| MMOV32 @Y3, MR1 ; and in parallel store A+B
MMOV32 @Y4, MR1 ; Store the (A+B) * C
MSTOP ; end of task

See also MADDF32 MRa, #16FHi, MRb
MADDF32 MRa, MRb, #16FHi
MADDF32 MRa, MRb, MRc
MADDF32 MRd, MRe, MRf || MMOV32 mem32, MRa
MMPYF32 MRa, MRb, MRc || MADDF32 MRd, MRe, MRf

51SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MAND32 MRa, MRb, MRc Bitwise AND

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

MRc CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 00cc bbaa
MSW: 0111 1100 0110 0000

Description Bitwise AND of MRb with MRc.
MRa(31:0) = MRb(31:0) AND MRc(31:0);

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

The MSTF register flags are modified based on the integer results of the operation.
NF = MRa(31);
ZF = 0;
if(MRa(31:0) == 0) { ZF = 1; }

Pipeline This is a single-cycle instruction.

Example MMOVIZ MR0, #0x5555 ; MR0 = 0x5555AAAA
MMOVXI MR0, #0xAAAA

MMOVIZ MR1, #0x5432 ; MR1 = 0x5432FEDC
MMOVXI MR1, #0xFEDC

; 0101 AND 0101 = 0101 (5)
; 0101 AND 0100 = 0100 (4)
; 0101 AND 0011 = 0001 (1)
; 0101 AND 0010 = 0000 (0)
; 1010 AND 1111 = 1010 (A)
; 1010 AND 1110 = 1010 (A)
; 1010 AND 1101 = 1000 (8)
; 1010 AND 1100 = 1000 (8)

MAND32 MR2, MR1, MR0 ; MR3 = 0x5410AA88

See also MADD32 MRa, MRb, MRc
MASR32 MRa, #SHIFT
MLSL32 MRa, #SHIFT
MLSR32 MRa, #SHIFT
MOR32 MRa, MRb, MRc
MXOR32 MRa, MRb, MRc
MSUB32 MRa, MRb, MRc

52 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MASR32 MRa, #SHIFT Arithmetic Shift Right

Operands
MRa CLA floating-point source/destination register (MR0 to MR3)

#SHIFT Number of bits to shift (1 to 32)

Opcode LSW: 0000 0000 0shi ftaa
MSW: 0111 1011 0100 0000

Description Arithmetic shift right of MRa by the number of bits indicated. The number of bits can be 1
to 32.
MARa(31:0) = Arithmetic Shift(MARa(31:0) by #SHIFT bits);

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

The MSTF register flags are modified based on the integer results of the operation.
NF = MRa(31);
ZF = 0;
if(MRa(31:0) == 0) { ZF = 1; }

Pipeline This is a single-cycle instruction.

Example ; Given m2 = (int32)32
; x2 = (int32)64
; b2 = (int32)-128
;
; Calculate
; m2 = m2/2
; x2 = x2/4
; b2 = b2/8
;
_Cla1Task2:

MMOV32 MR0, @_m2 ; MR0 = 32 (0x00000020)
MMOV32 MR1, @_x2 ; MR1 = 64 (0x00000040)
MMOV32 MR2, @_b2 ; MR2 = -128 (0xFFFFFF80)
MASR32 MR0, #1 ; MR0 = 16 (0x00000010)
MASR32 MR1, #2 ; MR1 = 16 (0x00000010)
MASR32 MR2, #3 ; MR2 = -16 (0xFFFFFFF0)
MMOV32 @_m2, MR0 ; store results
MMOV32 @_x2, MR1
MMOV32 @_b2, MR2
MSTOP ; end of task

See also MADD32 MRa, MRb, MRc
MAND32 MRa, MRb, MRc
MLSL32 MRa, #SHIFT
MLSR32 MRa, #SHIFT
MOR32 MRa, MRb, MRc
MXOR32 MRa, MRb, MRc
MSUB32 MRa, MRb, MRc

53SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MBCNDD 16BitDest {, CNDF} Branch Conditional Delayed

Operands
16BitDest 16-bit destination if condition is true

CNDF Optional condition tested

Opcode LSW: dest dest dest dest
MSW: 0111 1001 1000 cndf

Description If the specified condition is true, then branch by adding the signed 16BitDest value to the
MPC value. Otherwise, continue without branching. If the address overflows, it wraps
around. Therefore a value of "0xFFFE" will put the MPC back to the MBCNDD
instruction. Since the MPC is only 12-bits, unused bits the upper 4 bits of the destination
address are ignored.

Please refer to the pipeline section for important information regarding this instruction.
if (CNDF == TRUE) MPC += 16BitDest;

CNDF is one of the following conditions:
Encode (1) CNDF Description MSTF Flags Tested

0000 NEQ Not equal to zero ZF == 0

0001 EQ Equal to zero ZF == 1

0010 GT Greater than zero ZF == 0 AND NF == 0

0011 GEQ Greater than or equal to zero NF == 0

0100 LT Less than zero NF == 1

0101 LEQ Less than or equal to zero ZF == 1 OR NF == 1

1010 TF Test flag set TF == 1

1011 NTF Test flag not set TF == 0

1100 LU Latched underflow LUF == 1

1101 LV Latched overflow LVF == 1

1110 UNC Unconditional None

1111 UNCF (2) Unconditional with flag None
modification

(1) Values not shown are reserved.
(2) This is the default operation if no CNDF field is specified. This condition will allow the ZF and NF flags to

be modified when a conditional operation is executed. All other conditions will not modify these flags.

Restrictions The MBCNDD instruction is not allowed three instructions before or after a MBCNDD,
MCCNDD or MRCNDD instruction. Refer to the pipeline section for more information.

Flags This instruction does not modify flags in the MSTF register.
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline The MBCNDD instruction by itself is a single-cycle instruction. As shown in Table 24 for
each branch 6 instruction slots are executed; three before the branch instruction (I2-I4)
and three after the branch instruction (I5-I7). The total number of cycles for a branch
taken or not taken depends on the usage of these slots. That is, the number of cycles
depends on how many slots are filled with a MNOP as well as which slots are filled. The
effective number of cycles for a branch can, therefore, range from 1 to 7 cycles. The
number of cycles for a branch taken may not be the same as for a branch not taken.

54 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

Referring to Table 24 and Table 25, the instructions before and after MBCNDD have the
following properties:

• I1
– I1 is the last instruction that can effect the CNDF flags for the MBCNDD

instruction. The CNDF flags are tested in the D2 phase of the pipeline. That is, a
decision is made whether to branch or not when MBCNDD is in the D2 phase.

– There are no restrictions on the type of instruction for I1.

• I2, I3 and I4
– The three instructions proceeding MBCNDD can change MSTF flags but will have

no effect on whether the MBCNDD instruction branches or not. This is because
the flag modification will occur after the D2 phase of the MBCNDD instruction.

– These instructions must not be the following: MSTOP, MDEBUGSTOP,
MBCNDD, MCCNDD or MRCNDD.

• I5, I6 and I7
– The three instructions following MBCNDD are always executed irrespective of

whether the branch is taken or not.
– These instructions must not be the following: MSTOP, MDEBUGSTOP,

MBCNDD, MCCNDD or MRCNDD.
<Instruction 1> ; I1 Last instruction that can affect flags for

; the MBCNDD operation
<Instruction 2> ; I2 Cannot be stop, branch, call or return
<Instruction 3> ; I3 Cannot be stop, branch, call or return
<Instruction 4> ; I4 Cannot be stop, branch, call or return
MBCNDD _Skip, NEQ ; Branch to Skip if not eqal to zero

; Three instructions after MBCNDD are always
; executed whether the branch is taken or not

<Instruction 5> ; I5 Cannot be stop, branch, call or return
<Instruction 6> ; I6 Cannot be stop, branch, call or return
<Instruction 7> ; I7 Cannot be stop, branch, call or return
<Instruction 8> ; I8
<Instruction 9> ; I9
....
_Skip:
<Destination 1> ; d1 Can be any instruction
<Destination 2> ; d2
<Destination 3> ; d3

....

....
MSTOP
....

55SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

Table 24. Pipeline Activity For MBCNDD, Branch Not Taken

Instruction F1 F2 D1 D2 R1 R2 E W

I1 I1

I2 I2 I1

I3 I3 I2 I1

I4 I4 I3 I2 I1

MBCNDD MBCNDD I4 I3 I2 I1

I5 I5 MBCNDD I4 I3 I2 I1

I6 I6 I5 MBCNDD I4 I3 I2 I1

I7 I7 I6 I5 MBCNDD I4 I3 I2

I8 I8 I7 I6 I5 - I4 I3

I9 I9 I8 I7 I6 I5 - I4

I10 I10 I9 I8 I7 I6 I5 -

I10 I9 I8 I7 I6 I5

I10 I9 I8 I7 I6

I10 I9 I8 I7

I10 I9 I8

I10 I9

I10

Table 25. Pipeline Activity For MBCNDD, Branch Taken

Instruction F1 F2 D1 D2 R1 R2 E W

I1 I1

I2 I2 I1

I3 I3 I2 I1

I4 I4 I3 I2 I1

MBCNDD MBCNDD I4 I3 I2 I1

I5 I5 MBCNDD I4 I3 I2 I1

I6 I6 I5 MBCNDD I4 I3 I2 I1

I7 I7 I6 I5 MBCNDD I4 I3 I2

d1 d1 I7 I6 I5 - I4 I3

d2 d2 d1 I7 I6 I5 - I4

d3 d3 d2 d1 I7 I6 I5 -

d3 d2 d1 I7 I6 I5

d3 d2 d1 I7 I6

d3 d2 d1 I7

d3 d2 d1

d3 d2

d3

56 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

Example 1 ; if (State == 0.1)
; RampState = RampState || RAMPMASK
; else if (State == 0.01)
; CoastState = CoastState || COASTMASK
; else
; SteadyState = SteadyState || STEADYMASK
;
_Cla1Task1:
MMOV32 MR0, @State
MCMPF32 MR0, #0.1 ; Affects flags for 1st MBCNDD (A)
MNOP
MNOP
MNOP
MBCNDD Skip1, NEQ ; (A) If State != 0.1, go to Skip1
MNOP ; Always executed
MNOP ; Always executed
MNOP ; Always executed
MMOV32 MR1, @RampState ; Execute if (A) branch not taken
MMOVXI MR2, #RAMPMASK ; Execute if (A) branch not taken
MOR32 MR1, MR2 ; Execute if (A) branch not taken
MMOV32 @RampState, MR1 ; Execute if (A) branch not taken
MSTOP ; end of task if (A) branch not taken

Skip1:
MCMPF32 MR0,#0.01 ; Affects flags for 2nd MBCNDD (B)
MNOP
MNOP
MNOP
MBCNDD Skip2,NEQ ; (B) If State != 0.01, go to Skip2
MNOP ; Always executed
MNOP ; Always executed
MNOP ; Always executed
MMOV32 MR1, @CoastState ; Execute if (B) branch not taken
MMOVXI MR2, #COASTMASK ; Execute if (B) branch not taken
MOR32 MR1, MR2 ; Execute if (B) branch not taken
MMOV32 @CoastState, MR1 ; Execute if (B) branch not taken
MSTOP

Skip2:
MMOV32 MR3, @SteadyState ; Executed if (B) branch taken
MMOVXI MR2, #STEADYMASK ; Executed if (B) branch taken
MOR32 MR3, MR2 ; Executed if (B) branch taken
MMOV32 @SteadyState, MR3 ; Executed if (B) branch taken
MSTOP

57SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

Example 2 ; This example is the same as Example 1, except
; the code is optimized to take advantage of delay slots
;
; if (State == 0.1)
; RampState = RampState || RAMPMASK
; else if (State == 0.01)
; CoastState = CoastState || COASTMASK
; else
; SteadyState = SteadyState || STEADYMASK
;
_Cla1Task2:
MMOV32 MR0, @State
MCMPF32 MR0, #0.1 ; Affects flags for 1st MBCNDD (A)
MCMPF32 MR0, #0.01 ; Check used by 2nd MBCNDD (B)
MTESTTF EQ ; Store EQ flag in TF for 2nd MBCNDD (B)
MNOP
MBCNDD Skip1, NEQ ; (A) If State != 0.1, go to Skip1
MMOV32 MR1, @RampState ; Always executed
MMOVXI MR2, #RAMPMASK ; Always executed
MOR32 MR1, MR2 ; Always executed
MMOV32 @RampState, MR1 ; Execute if (A) branch not taken
MSTOP ; end of task if (A) branch not taken

Skip1:
MMOV32 MR3, @SteadyState
MMOVXI MR2, #STEADYMASK
MOR32 MR3, MR2
MBCNDD Skip2, NTF ; (B) if State != .01, go to Skip2
MMOV32 MR1, @CoastState ; Always executed
MMOVXI MR2, #COASTMASK ; Always executed
MOR32 MR1, MR2 ; Always executed
MMOV32 @CoastState, MR1 ; Execute if (B) branch not taken
MSTOP ; end of task if (B) branch not taken

Skip2:
MMOV32 @SteadyState, MR3 ; Executed if (B) branch taken
MSTOP

See also MCCNDD 16BitDest, CNDF
MRCNDD CNDF

58 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MCCNDD 16BitDest {, CNDF} Call Conditional Delayed

Operands
16BitDest 16-bit destination if condition is true

CNDF Optional condition to be tested

Opcode LSW: dest dest dest dest
MSW: 0111 1001 1001 cndf

Description If the specified condition is true, then store the return address in the RPC field of MSTF
and make the call by adding the signed 16BitDest value to the MPC value. Otherwise,
continue code execution without making the call. If the address overflows, it wraps
around. Therefore a value of "0xFFFE" will put the MPC back to the MCCNDD
instruction. Since the MPC is only 12 bits, unused bits the upper 4 bits of the destination
address are ignored.

Please refer to the pipeline section for important information regarding this instruction.
if (CNDF == TRUE)
{

RPC = return address;
MPC += 16BitDest;

};

CNDF is one of the following conditions:
Encode (3) CNDF Description MSTF Flags Tested

0000 NEQ Not equal to zero ZF == 0

0001 EQ Equal to zero ZF == 1

0010 GT Greater than zero ZF == 0 AND NF == 0

0011 GEQ Greater than or equal to zero NF == 0

0100 LT Less than zero NF == 1

0101 LEQ Less than or equal to zero ZF == 1 OR NF == 1

1010 TF Test flag set TF == 1

1011 NTF Test flag not set TF == 0

1100 LU Latched underflow LUF == 1

1101 LV Latched overflow LVF == 1

1110 UNC Unconditional None

1111 UNCF (4) Unconditional with flag None
modification

(3) Values not shown are reserved.
(4) This is the default operation if no CNDF field is specified. This condition will allow the ZF and NF flags to

be modified when a conditional operation is executed. All other conditions will not modify these flags.

Restrictions The MCCNDD instruction is not allowed three instructions before or after a MBCNDD,
MCCNDD, or MRCNDD instruction. Refer to the Pipeline section for more details.

Flags This instruction does not modify flags in the MSTF register.
Flag TF ZF NF LUF LVF

Modified No No No No No

59SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

Pipeline The MCCNDD instruction by itself is a single-cycle instruction. As shown in Table 26, for
each call 6 instruction slots are executed; three before the call instruction (I2-I4) and
three after the call instruction (I5-I7). The total number of cycles for a call taken or not
taken depends on the usage of these slots. That is, the number of cycles depends on
how many slots are filled with a MNOP as well as which slots are filled. The effective
number of cycles for a call can, therefore, range from 1 to 7 cycles. The number of
cycles for a call taken may not be the same as for a call not taken.

Referring to the following code fragment and the pipeline diagrams in Table 26 and
Table 27, the instructions before and after MCCNDD have the following properties:

• I1
– I1 is the last instruction that can effect the CNDF flags for the MCCNDD

instruction. The CNDF flags are tested in the D2 phase of the pipeline. That is, a
decision is made whether to branch or not when MCCNDD is in the D2 phase.

– There are no restrictions on the type of instruction for I1.
• I2, I3 and I4

– The three instructions proceeding MCCNDD can change MSTF flags but will have
no effect on whether the MCCNDD instruction makes the call or not. This is
because the flag modification will occur after the D2 phase of the MCCNDD
instruction.

– These instructions must not be the following: MSTOP, MDEBUGSTOP,
MBCNDD, MCCNDD or MRCNDD.

• I5, I6 and I7
– The three instructions following MBCNDD are always executed irrespective of

whether the branch is taken or not.
– These instructions must not be the following: MSTOP, MDEBUGSTOP,

MBCNDD, MCCNDD or MRCNDD.

60 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

<Instruction 1> ; I1 Last instruction that can affect flags for
; the MCCNDD operation

<Instruction 2> ; I2 Cannot be stop, branch, call or return
<Instruction 3> ; I3 Cannot be stop, branch, call or return
<Instruction 4> ; I4 Cannot be stop, branch, call or return

MCCNDD _func, NEQ ; Call to func if not eqal to zero

; Three instructions after MCCNDD are always
; executed whether the call is taken or not

<Instruction 5> ; I5 Cannot be stop, branch, call or return
<Instruction 6> ; I6 Cannot be stop, branch, call or return
<Instruction 7> ; I7 Cannot be stop, branch, call or return
<Instruction 8> ; I8 The address of this instruction is saved

; in the RPC field of the MSTF register.
; Upon return this value is loaded into MPC
; and fetching continues from this point.

<Instruction 9> ; I9
....
_func:
<Destination 1> ; d1 Can be any instruction
<Destination 2> ; d2
<Destination 3> ; d3
<Destination 4> ; d4 Last instruction that can affect flags for

; the MRCNDD operation

<Destination 5> ; d5 Cannot be stop, branch, call or return
<Destination 6> ; d6 Cannot be stop, branch, call or return
<Destination 7> ; d7 Cannot be stop, branch, call or return

MRCNDD, UNC ; Return to <Instruction 8>, unconditional

; Three instructions after MRCNDD are always
; executed whether the return is taken or not

<Destination 8> ; d8 Cannot be stop, branch, call or return
<Destination 9> ; d9 Cannot be stop, branch, call or return
<Destination 10> ; d10 Cannot be stop, branch, call or return
<Destination 11> ; d11
....
MSTOP

61SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

Table 26. Pipeline Activity For MCCNDD, Call Not Taken

Instruction F1 F2 D1 D2 R1 R2 E W

I1 I1

I2 I2 I1

I3 I3 I2 I1

I4 I4 I3 I2 I1

MCCNDD MCCNDD I4 I3 I2 I1

I5 I5 MCCNDD I4 I3 I2 I1

I6 I6 I5 MCCNDD I4 I3 I2 I1

I7 I7 I6 I5 MCCNDD I4 I3 I2

I8 I8 I7 I6 I5 - I4 I3

I9 I9 I8 I7 I6 I5 - I4

I10 I10 I9 I8 I7 I6 I5 -

etc I10 I9 I8 I7 I6 I5

.... I10 I9 I8 I7 I6

.... I10 I9 I8 I7

.... I10 I9 I8

I10 I9

I10

Table 27. Pipeline Activity For MCCNDD, Call Taken

Instruction F1 F2 D1 D2 R1 R2 E W

I1 I1

I2 I2 I1

I3 I3 I2 I1

I4 I4 I3 I2 I1

MCCNDD MCCNDD I4 I3 I2 I1

I5 I5 MCCNDD I4 I3 I2 I1

I6 I6 I5 MCCNDD I4 I3 I2 I1

I7 (1) I7 I6 I5 MCCNDD I4 I3 I2

d1 d1 I7 I6 I5 - I4 I3

d2 d2 d1 I7 I6 I5 - I4

d3 d3 d2 d1 I7 I6 I5 -

etc d3 d2 d1 I7 I6 I5

.... d3 d2 d1 I7 I6

.... d3 d2 d1 I7

.... d3 d2 d1

d3 d2

d3

(1) The RPC value in the MSTF register will point to the instruction following I7 (instruction I8).

Example ;

See also MBCNDD #16BitDest, CNDF
MMOV32 mem32, MSTF
MMOV32 MSTF, mem32
MRCNDD CNDF

62 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MCMP32 MRa, MRb 32-bit Integer Compare for Equal, Less Than or Greater Than

Operands
MRa CLA floating-point source register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 0000 bbaa
MSW: 0111 1111 0010 0000

Description Set ZF and NF flags on the result of MRa - MRb where MRa and MRb are 32-bit
integers. For a floating point compare refer to MCMPF32.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

The MSTF register flags are modified based on the integer results of the operation.

If(MRa == MRb) {ZF=1; NF=0;}
If(MRa > MRb) {ZF=0; NF=0;}
If(MRa < MRb) {ZF=0; NF=1;}

Pipeline This is a single-cycle instruction.

Example ; Behavior of ZF and NF flags for different comparisons
;
; Given A = (int32)1
; B = (int32)2
; C = (int32)-7
;

MMOV32 MR0, @_A ; MR0 = 1 (0x00000001)
MMOV32 MR1, @_B ; MR1 = 2 (0x00000002)
MMOV32 MR2, @_C ; MR2 = -7 (0xFFFFFFF9)
MCMP32 MR2, MR2 ; NF = 0, ZF = 1
MCMP32 MR0, MR1 ; NF = 1, ZF = 0
MCMP32 MR1, MR0 ; NF = 0, ZF = 0

See also MADD32 MRa, MRb, MRc
MSUB32 MRa, MRb, MRc

63SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MCMPF32 MRa, MRb 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands
MRa CLA floating-point source register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 0000 bbaa
MSW: 0111 1101 0000 0000

Description Set ZF and NF flags on the result of MRa - MRb. The MCMPF32 instruction is performed
as a logical compare operation. This is possible because of the IEEE format offsetting
the exponent. Basically the bigger the binary number, the bigger the floating-point value.

Special cases for inputs:

• Negative zero will be treated as positive zero.
• A denormalized value will be treated as positive zero.
• Not-a-Number (NaN) will be treated as infinity.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

The MSTF register flags are modified as follows:

If(MRa == MRb) {ZF=1; NF=0;}
If(MRa > MRb) {ZF=0; NF=0;}
If(MRa < MRb) {ZF=0; NF=1;}

Pipeline This is a single-cycle instruction.

Example ; Behavior of ZF and NF flags for different comparisons

MMOVIZ MR1, #-2.0 ; MR1 = -2.0 (0xC0000000)
MMOVIZ MR0, #5.0 ; MR0 = 5.0 (0x40A00000)
MCMPF32 MR1, MR0 ; ZF = 0, NF = 1
MCMPF32 MR0, MR1 ; ZF = 0, NF = 0
MCMPF32 MR0, MR0 ; ZF = 1, NF = 0

See also MCMPF32 MRa, #16FHi
MMAXF32 MRa, #16FHi
MMAXF32 MRa, MRb
MMINF32 MRa, #16FHi
MMINF32 MRa, MRb

64 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MCMPF32 MRa, #16FHi 32-bit Floating-Point Compare for Equal, Less Than or Greater Than

Operands
MRa CLA floating-point source register (MR0 to MR3)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.

Opcode LSW: IIII IIII IIII IIII
MSW: 0111 1000 1100 00aa

Description Compare the value in MRa with the floating-point value represented by the immediate
operand. Set the ZF and NF flags on (MRa - #16FHi:0).

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0xBFC00000). The assembler will accept either a hex or float as the immediate
value. That is, -1.5 can be represented as #-1.5 or #0xBFC0.

The MCMPF32 instruction is performed as a logical compare operation. This is possible
because of the IEEE floating-point format offsets the exponent. Basically the bigger the
binary number, the bigger the floating-point value.

Special cases for inputs:

• Negative zero will be treated as positive zero.
• Denormalized value will be treated as positive zero.
• Not-a-Number (NaN) will be treated as infinity.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

The MSTF register flags are modified as follows:

If(MRa == #16FHi:0) {ZF=1, NF=0;}
If(MRa > #16FHi:0) {ZF=0, NF=0;}
If(MRa < #16FHi:0) {ZF=0, NF=1;}

Pipeline This is a single-cycle instruction

Example 1 ; Behavior of ZF and NF flags for different comparisons

MMOVIZ MR1, #-2.0 ; MR1 = -2.0 (0xC0000000)
MMOVIZ MR0, #5.0 ; MR0 = 5.0 (0x40A00000)
MCMPF32 MR1, #-2.2 ; ZF = 0, NF = 0
MCMPF32 MR0, #6.5 ; ZF = 0, NF = 1
MCMPF32 MR0, #5.0 ; ZF = 1, NF = 0

65SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

Example 2 ; X is an array of 32-bit floating-point values
; and has len elements. Find the maximum value in
; the array and store it in Result
;
; Note: MCMPF32 and MSWAPF can be replaced with MMAXF32
;
_Cla1Task1:

MMOVI16 MAR1,#_X ; Start address
MUI16TOF32 MR0, @_len ; Length of the array
MNOP ; delay for MAR1 load
MNOP ; delay for MAR1 load
MMOV32 MR1, *MAR1[2]++ ; MR1 = X0

LOOP
MMOV32 MR2, *MAR1[2]++ ; MR2 = next element
MCMPF32 MR2, MR1 ; Compare MR2 with MR1
MSWAPF MR1, MR2, GT ; MR1 = MAX(MR1, MR2)
MADDF32 MR0, MR0, #-1.0 ; Decrememt the counter
MCMPF32 MR0 #0.0 ; Set/clear flags for MBCNDD
MNOP
MNOP
MNOP
MBCNDD LOOP, NEQ ; Branch if not equal to zero
MMOV32 @_Result, MR1 ; Always executed
MNOP ; Always executed
MNOP ; Always executed
MSTOP ; End of task

See also MCMPF32 MRa, MRb
MMAXF32 MRa, #16FHi
MMAXF32 MRa, MRb
MMINF32 MRa, #16FHi
MMINF32 MRa, MRb

66 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MDEBUGSTOP Debug Stop Task

Operands
none This instruction does not have any operands

Opcode LSW: 0000 0000 0000 0000
MSW: 0111 1111 0110 0000

Description When CLA breakpoints are enabled, the MDEBUGSTOP instruction is used to halt a
task so that it can be debugged. That is, MDEBUGSTOP is the CLA breakpoint. If CLA
breakpoints are not enabled, the MDEBUGSTOP instruction behaves like a MNOP.
Unlike the MSTOP, the MIRUN flag is not cleared and an interrupt is not issued. A
single-step or run operation will continue execution of the task.

Restrictions The MDEBUGSTOP instruction cannot be placed 3 instructions before or after a
MBCNDD, MCCNDD or MRCNDD instruction.

Flags This instruction does not modify flags in the MSTF register.
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example ;

See also MSTOP

67SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MEALLOW Enable CLA Write Access to EALLOW Protected Registers

Operands
none This instruction does not have any operands

Opcode LSW: 0000 0000 0000 0000
MSW: 0111 1111 1001 0000

Description This instruction sets the MEALLOW bit in the CLA status register MSTF. When this bit is
set, the CLA is allowed write access to EALLOW protected registers. To again protect
against CLA writes to protected registers, use the MEDIS instruction.

MEALLOW and MEDIS only control CLA write access; reads are allowed even if
MEALLOW has not been executed. MEALLOW and MEDIS are also independant from
the main CPU's EALLOW/EDIS. This instruction does not modify the EALLOW bit in the
main CPU's status register. The MEALLOW bit in MSTF only controls access for the
CLA while the EALLOW bit in the ST1 register only controls access for the main CPU.

As with EALLOW, the MEALLOW bit is overridden via the JTAG port, allowing full control
of register accesses during debug from Code Composer Studio.

Flags This instruction does not modify flags in the MSTF register.
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example ; C header file including definition of
; the EPwm1Regs structure
;
; The ePWM TZSEL register is EALLOW protected
;

.cdecls C,LIST,"CLAShared.h"

...
_Cla1Task1:

...
MEALLOW ; Allow CLA write access
MMOV16 @_EPwm1Regs.TZSEL.all, MR3 ; Write to TZSEL
MEDIS ; Disallow CLA write access
...
...
MSTOP

See also MEDIS

68 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MEDIS Disable CLA Write Access to EALLOW Protected Registers

Operands
none This instruction does not have any operands

Opcode LSW: 0000 0000 0000 0000
MSW: 0111 1111 1011 0000

Description This instruction clears the MEALLOW bit in the CLA status register MSTF. When this bit
is clear, the CLA is not allowed write access to EALLOW protected registers. To enable
CLA writes to protected registers, use the MEALLOW instruction.

MEALLOW and MEDIS only control CLA write access; reads are allowed even if
MEALLOW has not been executed. MEALLOW and MEDIS are also independant from
the main CPU's EALLOW/EDIS. This instruction does not modify the EALLOW bit in the
main CPU's status register. The MEALLOW bit in MSTF only controls access for the
CLA while the EALLOW bit in the ST1 register only controls access for the main CPU.

As with EALLOW, the MEALLOW bit is overridden via the JTAG port, allowing full control
of register accesses during debug from Code Composer Studio.

Flags This instruction does not modify flags in the MSTF register.
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example ; C header file including definition of
; the EPwm1Regs structure
;
; The ePWM TZSEL register is EALLOW protected
;

.cdecls C,LIST,"CLAShared.h"

...
_Cla1Task1:

...
MEALLOW ; Allow CLA write access
MMOV16 @_EPwm1Regs.TZSEL.all, MR3 ; Write to TZSEL
MEDIS ; Disallow CLA write access
...
...
MSTOP

See also MEALLOW

69SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MEINVF32 MRa, MRb 32-bit Floating-Point Reciprocal Approximation

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 0000 bbaa
MSW: 0111 1111 0000 0000

Description This operation generates an estimate of 1/X in 32-bit floating-point format accurate to
approximately 8 bits. This value can be used in a Newton-Raphson algorithm to get a
more accurate answer. That is:
Ye = Estimate(1/X);
Ye = Ye*(2.0 - Ye*X);
Ye = Ye*(2.0 - Ye*X);

After two iterations of the Newton-Raphson algorithm, you will get an exact answer
accurate to the 32-bit floating-point format. On each iteration the mantissa bit accuracy
approximately doubles. The MEINVF32 operation will not generate a negative zero,
DeNorm or NaN value.
MRa = Estimate of 1/MRb;

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MEINVF32 generates an underflow condition.
• LVF = 1 if MEINVF32 generates an overflow condition.

Pipeline This is a single-cycle instruction.

70 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

Example ; Calculate Num/Den using a Newton-Raphson algorithum for 1/Den
; Ye = Estimate(1/X)
; Ye = Ye*(2.0 - Ye*X)
; Ye = Ye*(2.0 - Ye*X)
;
_Cla1Task1:

MMOV32 MR1, @_Den ; MR1 = Den
MEINVF32 MR2, MR1 ; MR2 = Ye = Estimate(1/Den)
MMPYF32 MR3, MR2, MR1 ; MR3 = Ye*Den
MSUBF32 MR3, #2.0, MR3 ; MR3 = 2.0 - Ye*Den
MMPYF32 MR2, MR2, MR3 ; MR2 = Ye = Ye*(2.0 - Ye*Den)
MMPYF32 MR3, MR2, MR1 ; MR3 = Ye*Den

|| MMOV32 MR0, @_Num ; MR0 = Num
MSUBF32 MR3, #2.0, MR3 ; MR3 = 2.0 - Ye*Den
MMPYF32 MR2, MR2, MR3 ; MR2 = Ye = Ye*(2.0 - Ye*Den)

|| MMOV32 MR1, @_Den ; Reload Den To Set Sign
MNEGF32 MR0, MR0, EQ ; if(Den == 0.0) Change Sign Of Num
MMPYF32 MR0, MR2, MR0 ; MR0 = Y = Ye*Num
MMOV32 @_Dest, MR0 ; Store result
MSTOP ; end of task

See also MEISQRTF32 MRa, MRb

71SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MEISQRTF32 MRa, MRb 32-bit Floating-Point Square-Root Reciprocal Approximation

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 0000 bbaa
MSW: 0111 1110 0100 0000

Description This operation generates an estimate of 1/sqrt(X) in 32-bit floating-point format accurate
to approximately 8 bits. This value can be used in a Newton-Raphson algorithm to get a
more accurate answer. That is:
Ye = Estimate(1/sqrt(X));
Ye = Ye*(1.5 - Ye*Ye*X/2.0);
Ye = Ye*(1.5 - Ye*Ye*X/2.0);

After 2 iterations of the Newton-Raphson algorithm, you will get an exact answer
accurate to the 32-bit floating-point format. On each iteration the mantissa bit accuracy
approximately doubles. The MEISQRTF32 operation will not generate a negative zero,
DeNorm or NaN value.
MRa = Estimate of 1/sqrt (MRb);

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MEISQRTF32 generates an underflow condition.
• LVF = 1 if MEISQRTF32 generates an overflow condition.

Pipeline This is a single-cycle instruction.

72 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

Example ; Y = sqrt(X)
; Ye = Estimate(1/sqrt(X));
; Ye = Ye*(1.5 - Ye*Ye*X*0.5)
; Ye = Ye*(1.5 - Ye*Ye*X*0.5)
; Y = X*Ye
;
_Cla1Task3:

MMOV32 MR0, @_x ; MR0 = X
MEISQRTF32 MR1, MR0 ; MR1 = Ye = Estimate(1/sqrt(X))
MMOV32 MR1, @_x, EQ ; if(X == 0.0) Ye = 0.0
MMPYF32 MR3, MR0, #0.5 ; MR3 = X*0.5
MMPYF32 MR2, MR1, MR3 ; MR2 = Ye*X*0.5
MMPYF32 MR2, MR1, MR2 ; MR2 = Ye*Ye*X*0.5
MSUBF32 MR2, #1.5, MR2 ; MR2 = 1.5 - Ye*Ye*X*0.5
MMPYF32 MR1, MR1, MR2 ; MR1 = Ye = Ye*(1.5 - Ye*Ye*X*0.5)
MMPYF32 MR2, MR1, MR3 ; MR2 = Ye*X*0.5
MMPYF32 MR2, MR1, MR2 ; MR2 = Ye*Ye*X*0.5
MSUBF32 MR2, #1.5, MR2 ; MR2 = 1.5 - Ye*Ye*X*0.5
MMPYF32 MR1, MR1, MR2 ; MR1 = Ye = Ye*(1.5 - Ye*Ye*X*0.5)
MMPYF32 MR0, MR1, MR0 ; MR0 = Y = Ye*X
MMOV32 @_y, MR0 ; Store Y = sqrt(X)
MSTOP ; end of task

See also MEINVF32 MRa, MRb

73SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MF32TOI16 MRa, MRb Convert 32-bit Floating-Point Value to 16-bit Integer

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 0000 bbaa
MSW: 0111 1101 1110 0000

Description Convert a 32-bit floating point value in MRb to a 16-bit integer and truncate. The result
will be stored in MRa.
MRa(15:0) = F32TOI16(MRb);
MRa(31:16) = sign extension of MRa(15);

Flags This instruction does not affect any flags:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example MMOVIZ MR0, #5.0 ; MR0 = 5.0 (0x40A00000)
MF32TOI16 MR1, MR0 ; MR1(15:0) = MF32TOI16(MR0) = 0x0005

; MR1(31:16) = Sign extension of MR1(15) = 0x0000
MMOVIZ MR2, #-5.0 ; MR2 = -5.0 (0xC0A00000)
MF32TOI16 MR3, MR2 ; MR3(15:0) = MF32TOI16(MR2) = -5 (0xFFFB)

; MR3(31:16) = Sign extension of MR3(15) = 0xFFFF

See also MF32TOI16R MRa, MRb
MF32TOUI16 MRa, MRb
MF32TOUI16R MRa, MRb
MI16TOF32 MRa, MRb
MI16TOF32 MRa, mem16
MUI16TOF32 MRa, mem16
MUI16TOF32 MRa, MRb

74 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MF32TOI16R MRa, MRb Convert 32-bit Floating-Point Value to 16-bit Integer and Round

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 0000 bbaa
MSW: 0111 1110 0110 0000

Description Convert the 32-bit floating point value in MRb to a 16-bit integer and round to the nearest
even value. The result is stored in MRa.
MRa(15:0) = F32TOI16round(MRb);
MRa(31:16) = sign extension of MRa(15);

Flags This instruction does not affect any flags:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example MMOVIZ MR0, #0x3FD9 ; MR0(31:16) = 0x3FD9
MMOVXI MR0, #0x999A ; MR0(15:0) = 0x999A

; MR0 = 1.7 (0x3FD9999A)
MF32TOI16R MR1, MR0 ; MR1(15:0) = MF32TOI16round (MR0) = 2 (0x0002)

; MR1(31:16) = Sign extension of MR1(15) = 0x0000
MMOVF32 MR2, #-1.7 ; MR2 = -1.7 (0xBFD9999A)
MF32TOI16R MR3, MR2 ; MR3(15:0) = MF32TOI16round (MR2) = -2 (0xFFFE)

; MR3(31:16) = Sign extension of MR2(15) = 0xFFFF

See also MF32TOI16 MRa, MRb
MF32TOUI16 MRa, MRb
MF32TOUI16R MRa, MRb
MI16TOF32 MRa, MRb
MI16TOF32 MRa, mem16
MUI16TOF32 MRa, mem16
MUI16TOF32 MRa, MRb

75SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MF32TOI32 MRa, MRb Convert 32-bit Floating-Point Value to 32-bit Integer

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 0000 bbaa
MSW: 0111 1101 0110 0000

Description Convert the 32-bit floating-point value in MRb to a 32-bit integer value and truncate.
Store the result in MRa.
MRa = F32TOI32(MRb);

Flags This instruction does not affect any flags:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example 1 MMOVF32 MR2, #11204005.0 ; MR2 = 11204005.0 (0x4B2AF5A5)
MF32TOI32 MR3, MR2 ; MR3 = MF32TOI32(MR2) = 11204005 (0x00AAF5A5)
MMOVF32 MR0, #-11204005.0 ; MR0 = -11204005.0 (0xCB2AF5A5)
MF32TOI32 MR1, MR0 ; MR1 = MF32TOI32(MR0) = -11204005 (0xFF550A5B)

Example 2 ; Given X, M and B are IQ24 numbers:
; X = IQ24(+2.5) = 0x02800000
; M = IQ24(+1.5) = 0x01800000
; B = IQ24(-0.5) = 0xFF800000
;
; Calculate Y = X * M + B
;
; Convert M, X and B from IQ24 to float
;
_Cla1Task2:

MI32TOF32 MR0, @_M ; MR0 = 0x4BC00000
MI32TOF32 MR1, @_X ; MR1 = 0x4C200000
MI32TOF32 MR2, @_B ; MR2 = 0xCB000000
MMPYF32 MR0, MR0, #0x3380 ; M = 1/(1*2^24) * iqm = 1.5 (0x3FC00000)
MMPYF32 MR1, MR1, #0x3380 ; X = 1/(1*2^24) * iqx = 2.5 (0x40200000)
MMPYF32 MR2, MR2, #0x3380 ; B = 1/(1*2^24) * iqb = -.5 (0xBF000000)
MMPYF32 MR3, MR0, MR1 ; M*X
MADDF32 MR2, MR2, MR3 ; Y=MX+B = 3.25 (0x40500000)

; Convert Y from float32 to IQ24
MMPYF32 MR2, MR2, #0x4B80 ; Y * 1*2^24
MF32TOI32 MR2, MR2 ; IQ24(Y) = 0x03400000
MMOV32 @_Y, MR2 ; store result
MSTOP ; end of task

See also MF32TOUI32 MRa, MRb
MI32TOF32 MRa, MRb
MI32TOF32 MRa, mem32
MUI32TOF32 MRa, MRb
MUI32TOF32 MRa, mem32

76 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MF32TOUI16 MRa, MRb Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 0000 bbaa
MSW: 0111 1110 1010 0000

Description Convert the 32-bit floating point value in MRb to an unsigned 16-bit integer value and
truncate to zero. The result will be stored in MRa. To instead round the integer to the
nearest even value use the MF32TOUI16R instruction.
MRa(15:0) = F32TOUI16(MRb);
MRa(31:16) = 0x0000;

Flags This instruction does not affect any flags:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example MMOVIZ MR0, #9.0 ; MR0 = 9.0 (0x41100000)
MF32TOUI16 MR1, MR0 ; MR1(15:0) = MF32TOUI16(MR0) = 9 (0x0009)

; MR1(31:16) = 0x0000
MMOVIZ MR2, #-9.0 ; MR2 = -9.0 (0xC1100000)
MF32TOUI16 MR3, MR2 ; MR3(15:0) = MF32TOUI16(MR2) = 0 (0x0000)

; MR3(31:16) = 0x0000

See also MF32TOI16 MRa, MRb
MF32TOUI16R MRa, MRb
MF32TOUI16R MRa, MRb
MI16TOF32 MRa, MRb
MI16TOF32 MRa, mem16
MUI16TOF32 MRa, mem16
MUI16TOF32 MRa, MRb

77SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MF32TOUI16R MRa, MRb Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer and Round

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 0000 bbaa
MSW: 0111 1110 1100 0000

Description Convert the 32-bit floating-point value in MRb to an unsigned 16-bit integer and round to
the closest even value. The result will be stored in MRa. To instead truncate the
converted value, use the MF32TOUI16 instruction.
MRa(15:0) = MF32TOUI16round(MRb);
MRa(31:16) = 0x0000;

Flags This instruction does not affect any flags:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example MMOVIZ MR0, #0x412C ; MR0 = 0x412C
MMOVXI MR0, #0xCCCD ; MR0 = 0xCCCD ; MR0 = 10.8 (0x412CCCCD)
MF32TOUI16R MR1, MR0 ; MR1(15:0) = MF32TOUI16round(MR0) = 11 (0x000B)

; MR1(31:16) = 0x0000
MMOVF32 MR2, #-10.8 ; MR2 = -10.8 (0x0xC12CCCCD)
MF32TOUI16R MR3, MR2 ; MR3(15:0) = MF32TOUI16round(MR2) = 0 (0x0000)

; MR3(31:16) = 0x0000

See also MF32TOI16 MRa, MRb
MF32TOI16R MRa, MRb
MF32TOUI16 MRa, MRb
MI16TOF32 MRa, MRb
MI16TOF32 MRa, mem16
MUI16TOF32 MRa, mem16
MUI16TOF32 MRa, MRb

78 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MF32TOUI32 MRa, MRb Convert 32-bit Floating-Point Value to 16-bit Unsigned Integer

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 0000 bbaa
MSW: 0111 1101 1010 0000

Description Convert the 32-bit floating-point value in MRb to an unsigned 32-bit integer and store the
result in MRa.
MRa = F32TOUI32(MRb);

Flags This instruction does not affect any flags:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example MMOVIZ MR0, #12.5 ; MR0 = 12.5 (0x41480000)
MF32TOUI32 MR0, MR0 ; MR0 = MF32TOUI32 (MR0) = 12 (0x0000000C)
MMOVIZ MR1, #-6.5 ; MR1 = -6.5 (0xC0D00000)
MF32TOUI32 MR2, MR1 ; MR2 = MF32TOUI32 (MR1) = 0.0 (0x00000000)

See also MF32TOI32 MRa, MRb
MI32TOF32 MRa, MRb
MI32TOF32 MRa, mem32
MUI32TOF32 MRa, MRb
MUI32TOF32 MRa, mem32

79SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MFRACF32 MRa, MRb Fractional Portion of a 32-bit Floating-Point Value

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 0000 bbaa
MSW: 0111 1110 0000 0000

Description Returns in MRa the fractional portion of the 32-bit floating-point value in MRb

Flags This instruction does not affect any flags:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example MMOVIZ MR2, #19.625 ; MR2 = 19.625 (0x419D0000)
MFRACF32 MR3, MR2 ; MR3 = MFRACF32(MR2) = 0.625 (0x3F200000)0)

See also

80 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MI16TOF32 MRa, MRb Convert 16-bit Integer to 32-bit Floating-Point Value

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 0000 bbaa
MSW: 0111 1110 1000 0000

Description Convert the 16-bit signed integer in MRb to a 32-bit floating point value and store the
result in MRa.
MRa = MI16TOF32(MRb);

Flags This instruction does not affect any flags:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example MMOVIZ MR0, #0x0000 ; MR0(31:16) = 0.0 (0x0000)
MMOVXI MR0, #0x0004 ; MR0(15:0) = 4.0 (0x0004)
MI16TOF32 MR1, MR0 ; MR1 = MI16TOF32 (MR0) = 4.0 (0x40800000)

MMOVIZ MR2, #0x0000 ; MR2(31:16) = 0.0 (0x0000)
MMOVXI MR2, #0xFFFC ; MR2(15:0) = -4.0 (0xFFFC)
MI16TOF32 MR3, MR2 ; MR3 = MI16TOF32 (MR2) = -4.0 (0xC0800000)
MSTOP

See also MF32TOI16 MRa, MRb
MF32TOI16R MRa, MRb
MF32TOUI16 MRa, MRb
MF32TOUI16R MRa, MRb
MI16TOF32 MRa, mem16
MUI16TOF32 MRa, mem16
MUI16TOF32 MRa, MRb

81SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MI16TOF32 MRa, mem16 Convert 16-bit Integer to 32-bit Floating-Point Value

Operands
MRa CLA floating-point destination register (MR0 to MR3)

mem16 16-bit source memory location to be converted

Opcode LSW: mmmm mmmm mmmm mmmm
MSW: 0111 0101 00aa addr

Description Convert the 16-bit signed integer indicated by the mem16 pointer to a 32-bit
floating-point value and store the result in MRa.
MRa = MI16TOF32[mem16];

Flags This instruction does not affect any flags:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction:

Example ; Assume A = 4 (0x0004)
; B = -4 (0xFFFC)

MI16TOF32 MR0, @_A ; MR0 = MI16TOF32(A) = 4.0 (0x40800000)
MI16TOF32 MR1, @_B ; MR1 = MI16TOF32(B) = -4.0 (0xC0800000

See also MF32TOI16 MRa, MRb
MF32TOI16R MRa, MRb
MF32TOUI16 MRa, MRb
MF32TOUI16R MRa, MRb
MI16TOF32 MRa, MRb
MUI16TOF32 MRa, mem16
MUI16TOF32 MRa, MRb

82 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MI32TOF32 MRa, mem32 Convert 32-bit Integer to 32-bit Floating-Point Value

Operands
MRa CLA floating-point destination register (MR0 to MR3)

mem32 32-bit memory source for the MMOV32 operation.

Opcode LSW: mmmm mmmm mmmm mmmm
MSW: 0111 0100 01aa addr

Description Convert the 32-bit signed integer indicated by mem32 to a 32-bit floating point value and
store the result in MRa.
MRa = MI32TOF32[mem32];

Flags This instruction does not affect any flags:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example ; Given X, M and B are IQ24 numbers:
; X = IQ24(+2.5) = 0x02800000
; M = IQ24(+1.5) = 0x01800000
; B = IQ24(-0.5) = 0xFF800000
;
; Calculate Y = X * M + B
;
; Convert M, X and B from IQ24 to float
;

_Cla1Task3:
MI32TOF32 MR0, @_M ; MR0 = 0x4BC00000
MI32TOF32 MR1, @_X ; MR1 = 0x4C200000
MI32TOF32 MR2, @_B ; MR2 = 0xCB000000
MMPYF32 MR0, MR0, #0x3380 ; M = 1/(1*2^24) * iqm = 1.5 (0x3FC00000)
MMPYF32 MR1, MR1, #0x3380 ; X = 1/(1*2^24) * iqx = 2.5 (0x40200000)
MMPYF32 MR2, MR2, #0x3380 ; B = 1/(1*2^24) * iqb = -.5 (0xBF000000)
MMPYF32 MR3, MR0, MR1 ; M*X
MADDF32 MR2, MR2, MR3 ; Y=MX+B = 3.25 (0x40500000)

; Convert Y from float32 to IQ24
MMPYF32 MR2, MR2, #0x4B80 ; Y * 1*2^24
MF32TOI32 MR2, MR2 ; IQ24(Y) = 0x03400000
MMOV32 @_Y, MR2 ; store result
MSTOP ; end of task

See also MF32TOI32 MRa, MRb
MF32TOUI32 MRa, MRb
MI32TOF32 MRa, MRb
MUI32TOF32 MRa, MRb
MUI32TOF32 MRa, mem32

83SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MI32TOF32 MRa, MRb Convert 32-bit Integer to 32-bit Floating-Point Value

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 0000 bbaa
MSW: 0111 1101 1000 0000

Description Convert the signed 32-bit integer in MRb to a 32-bit floating-point value and store the
result in MRa.
MRa = MI32TOF32(MRb);

Flags This instruction does not affect any flags:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example ; Example1:
;

MMOVIZ MR2, #0x1111 ; MR2(31:16) = 4369 (0x1111)
MMOVXI MR2, #0x1111 ; MR2(15:0) = 4369 (0x1111)

; MR2 = +286331153 (0x11111111)
MI32TOF32 MR3, MR2 ; MR3 = MI32TOF32 (MR2) = 286331153.0 (0x4D888888)

See also MF32TOI32 MRa, MRb
MF32TOUI32 MRa, MRb
MI32TOF32 MRa, mem32
MUI32TOF32 MRa, MRb
MUI32TOF32 MRa, mem32

84 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MLSL32 MRa, #SHIFT Logical Shift Left

Operands
MRa CLA floating-point source/destination register (MR0 to MR3)

#SHIFT Number of bits to shift (1 to 32)

Opcode LSW: 0000 0000 0shi ftaa
MSW: 0111 1011 1100 0000

Description Logical shift left of MRa by the number of bits indicated. The number of bits can be 1 to
32.
MARa(31:0) = Logical Shift Left(MARa(31:0) by #SHIFT bits);

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

The MSTF register flags are modified based on the integer results of the operation.
NF = MRa(31);
ZF = 0;
if(MRa(31:0) == 0) { ZF = 1; }

Pipeline This is a single-cycle instruction.

Example ; Given m2 = (int32)32
; x2 = (int32)64
; b2 = (int32)-128
;
; Calculate:
; m2 = m2*2
; x2 = x2*4
; b2 = b2*8
;
_Cla1Task3:

MMOV32 MR0, @_m2 ; MR0 = 32 (0x00000020)
MMOV32 MR1, @_x2 ; MR1 = 64 (0x00000040)
MMOV32 MR2, @_b2 ; MR2 = -128 (0xFFFFFF80)
MLSL32 MR0, #1 ; MR0 = 64 (0x00000040)
MLSL32 MR1, #2 ; MR1 = 256 (0x00000100)
MLSL32 MR2, #3 ; MR2 = -1024 (0xFFFFFC00)
MMOV32 @_m2, MR0 ; Store results
MMOV32 @_x2, MR1
MMOV32 @_b2, MR2
MSTOP ; end of task

See also MADD32 MRa, MRb, MRc
MASR32 MRa, #SHIFT
MAND32 MRa, MRb, MRc
MLSR32 MRa, #SHIFT
MOR32 MRa, MRb, MRc
MXOR32 MRa, MRb, MRc
MSUB32 MRa, MRb, MRc

85SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MLSR32 MRa, #SHIFT Logical Shift Right

Operands
MRa CLA floating-point source/destination register (MR0 to MR3)

#SHIFT Number of bits to shift (1 to 32)

Opcode LSW: 0000 0000 0shi ftaa
MSW: 0111 1011 1000 0000

Description Logical shift right of MRa by the number of bits indicated. The number of bits can be 1 to
32. Unlike the arithmetic shift (MASR32), the logical shift does not preserve the number's
sign bit. Every bit in the operand is moved the specified number of bit positions, and the
vacant bit-positions are filled in with zeros
MARa(31:0) = Logical Shift Right(MARa(31:0) by #SHIFT bits);

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

The MSTF register flags are modified based on the integer results of the operation.
NF = MRa(31);
ZF = 0;
if(MRa(31:0) == 0) { ZF = 1;}

Pipeline This is a single-cycle instruction.

Example ; Illustrate the difference between MASR32 and MLSR32

MMOVIZ MR0, #0xAAAA ; MR0 = 0xAAAA5555
MMOVXI MR0, #0x5555

MMOV32 MR1, MR0 ; MR1 = 0xAAAA5555
MMOV32 MR2, MR0 ; MR2 = 0xAAAA5555

MASR32 MR1, #1 ; MR1 = 0xD5552AAA
MLSR32 MR2, #1 ; MR2 = 0x55552AAA

MASR32 MR1, #1 ; MR1 = 0xEAAA9555
MLSR32 MR2, #1 ; MR2 = 0x2AAA9555

MASR32 MR1, #6 ; MR1 = 0xFFAAAA55
MLSR32 MR2, #6 ; MR2 = 0x00AAAA55

See also MADD32 MRa, MRb, MRc
MASR32 MRa, #SHIFT
MAND32 MRa, MRb, MRc
MLSL32 MRa, #SHIFT
MOR32 MRa, MRb, MRc
MXOR32 MRa, MRb, MRc
MSUB32 MRa, MRb, MRc

86 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MMACF32 MR3, MR2, MRd, MRe, MRf ||MMOV32 MRa, mem32 32-bit Floating-Point Multiply and
Accumulate with Parallel Move

Operands
MR3 floating-point destination/source register MR3 for the add operation

MR2 CLA floating-point source register MR2 for the add operation

MRd CLA floating-point destination register (MR0 to MR3) for the multiply operation
MRd cannot be the same register as MRa

MRe CLA floating-point source register (MR0 to MR3) for the multiply operation

MRf CLA floating-point source register (MR0 to MR3) for the multiply operation

MRa CLA floating-point destination register for the MMOV32 operation (MR0 to MR3).
MRa cannot be MR3 or the same register as MRd.

mem32 32-bit source for the MMOV32 operation

Opcode LSW: mmmm mmmm mmmm mmmm
MSW: 0011 ffee ddaa addr

Description Multiply and accumulate the contents of floating-point registers and move from register
to memory. The destination register for the MMOV32 cannot be the same as the
destination registers for the MMACF32.
MR3 = MR3 + MR2;
MRd = MRe * MRf;
MRa = [mem32];

Restrictions The destination registers for the MMACF32 and the MMOV32 must be unique. That is,
MRa cannot be MR3 and MRa cannot be the same register as MRd.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MMACF32 (add or multiply) generates an underflow condition.
• LVF = 1 if MMACF32 (add or multiply) generates an overflow condition.

MMOV32 sets the NF and ZF flags as follows:
NF = MRa(31);
ZF = 0;
if(MRa(30:23) == 0) { ZF = 1; NF = 0; }

Pipeline MMACF32 and MMOV32 complete in a single cycle.

87SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

Example 1 ; Perform 5 multiply and accumulate operations:
;
; X and Y are 32-bit floating point arrays
;
; 1st multiply: A = X0 * Y0
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4th multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3
;
; Result = A + B + C + D + E
;
_Cla1Task1:

MMOVI16 MAR0, #_X ; MAR0 points to X array
MMOVI16 MAR1, #_Y ; MAR1 points to Y array
MNOP ; Delay for MAR0, MAR1 load
MNOP ; Delay for MAR0, MAR1 load

; <-- MAR0 valid
MMOV32 MR0, *MAR0[2]++ ; MR0 = X0, MAR0 += 2

; <-- MAR1 valid
MMOV32 MR1, *MAR1[2]++ ; MR1 = Y0, MAR1 += 2

MMPYF32 MR2, MR0, MR1 ; MR2 = A = X0 * Y0
|| MMOV32 MR0, *MAR0[2]++ ; In parallel MR0 = X1, MAR0 += 2

MMOV32 MR1, *MAR1[2]++ ; MR1 = Y1, MAR1 += 2

MMPYF32 MR3, MR0, MR1 ; MR3 = B = X1 * Y1
|| MMOV32 MR0, *MAR0[2]++ ; In parallel MR0 = X2, MAR0 += 2

MMOV32 MR1, *MAR1[2]++ ; MR1 = Y2, MAR2 += 2

MMACF32 MR3, MR2, MR2, MR0, MR1 ; MR3 = A + B, MR2 = C = X2 * Y2
|| MMOV32 MR0, *MAR0[2]++ ; In parallel MR0 = X3

MMOV32 MR1, *MAR1[2]++ ; MR1 = Y3 M

MACF32 MR3, MR2, MR2, MR0, MR1 ; MR3 = (A + B) + C, MR2 = D = X3 * Y3
|| MMOV32 MR0, *MAR0 ; In parallel MR0 = X4

MMOV32 MR1, *MAR1 ; MR1 = Y4

MMPYF32 MR2, MR0, MR1 ; MR2 = E = X4 * Y4
|| MADDF32 MR3, MR3, MR2 ; in parallel MR3 = (A + B + C) + D

MADDF32 MR3, MR3, MR2 ; MR3 = (A + B + C + D) + E
MMOV32 @_Result, MR3 ; Store the result
MSTOP ; end of task

88 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

Example 2 ; sum = X0*B0 + X1*B1 + X2*B2 + Y1*A1 + Y2*B2
;
; X2 = X1
; X1 = X0
; Y2 = Y1 ; Y1 = sum
;
_ClaTask2:

MMOV32 MR0, @_B2 ; MR0 = B2
MMOV32 MR1, @_X2 ; MR1 = X2
MMPYF32 MR2, MR1, MR0 ; MR2 = X2*B2

|| MMOV32 MR0, @_B1 ; MR0 = B1
MMOVD32 MR1, @_X1 ; MR1 = X1, X2 = X1
MMPYF32 MR3, MR1, MR0 ; MR3 = X1*B1

|| MMOV32 MR0, @_B0 ; MR0 = B0
MMOVD32 MR1, @_X0 ; MR1 = X0, X1 = X0

; MR3 = X1*B1 + X2*B2, MR2 = X0*B0
; MR0 = A2

MMACF32 MR3, MR2, MR2, MR1, MR0
|| MMOV32 MR0, @_A2 M

MOV32 MR1, @_Y2 ; MR1 = Y2

; MR3 = X0*B0 + X1*B1 + X2*B2, MR2 = Y2*A2
; MR0 = A1

MMACF32 MR3, MR2, MR2, MR1, MR0
|| MMOV32 MR0, @_A1

MMOVD32 MR1,@_Y1 ; MR1 = Y1, Y2 = Y1
MADDF32 MR3, MR3, MR2 ; MR3 = Y2*A2 + X0*B0 + X1*B1 + X2*B2

|| MMPYF32 MR2, MR1, MR0 ; MR2 = Y1*A1
MADDF32 MR3, MR3, MR2 ; MR3 = Y1*A1 + Y2*A2 + X0*B0 + X1*B1 + X2*B2
MMOV32 @_Y1, MR3 ; Y1 = MR3
MSTOP ; end of task

See also MMPYF32 MRa, MRb, MRc || MADDF32 MRd, MRe, MRf

89SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MMAXF32 MRa, MRb 32-bit Floating-Point Maximum

Operands
MRa CLA floating-point source/destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 0000 bbaa
MSW: 0111 1101 0010 0000

Description if(MRa < MRb) MRa = MRb;

Special cases for the output from the MMAXF32 operation:

• NaN output will be converted to infinity
• A denormalized output will be converted to positive zero.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(MRa == MRb) {ZF=1; NF=0;}
if(MRa > MRb) {ZF=0; NF=0;}
if(MRa < MRb) {ZF=0; NF=1;}

Pipeline This is a single-cycle instruction.

Example 1 MMOVIZ MR0, #5.0 ; MR0 = 5.0 (0x40A00000)
MMOVIZ MR1, #-2.0 ; MR1 = -2.0 (0xC0000000)
MMOVIZ MR2, #-1.5 ; MR2 = -1.5 (0xBFC00000)
MMAXF32 MR2, MR1 ; MR2 = -1.5, ZF = NF = 0
MMAXF32 MR1, MR2 ; MR1 = -1.5, ZF = 0, NF = 1
MMAXF32 MR2, MR0 ; MR2 = 5.0, ZF = 0, NF = 1
MAXF32 MR0, MR2 ; MR2 = 5.0, ZF = 1, NF = 0

Example 2 ; X is an array of 32-bit floating-point values
; Find the maximum value in an array X
; and store it in Result
;
_Cla1Task1:

MMOVI16 MAR1,#_X ; Start address
MUI16TOF32 MR0, @_len ; Length of the array
MNOP ; delay for MAR1 load
MNOP ; delay for MAR1 load
MMOV32 MR1, *MAR1[2]++ ; MR1 = X0

LOOP
MMOV32 MR2, *MAR1[2]++ ; MR2 = next element
MMAXF32 MR1, MR2 ; MR1 = MAX(MR1, MR2)
MADDF32 MR0, MR0, #-1.0 ; Decrememt the counter
MCMPF32 MR0 #0.0 ; Set/clear flags for MBCNDD
MNOP
MNOP
MNOP
MBCNDD LOOP, NEQ ; Branch if not equal to zero
MMOV32 @_Result, MR1 ; Always executed
MNOP ; Always executed
MNOP ; Always executed
MSTOP ; End of task

See also MCMPF32 MRa, MRb
MCMPF32 MRa, #16FHi
MMAXF32 MRa, #16FHi
MMINF32 MRa, MRb
MMINF32 MRa, #16FHi

90 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MMAXF32 MRa, #16FHi 32-bit Floating-Point Maximum

Operands
MRa CLA floating-point source/destination register (MR0 to MR3)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.

Opcode LSW: IIII IIII IIII IIII
MSW: 0111 1001 0000 00aa

Description Compare MRa with the floating-point value represented by the immediate operand. If the
immediate value is larger, then load it into MRa.
if(MRa < #16FHi:0) MRa = #16FHi:0;

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0xBFC00000). The assembler will accept either a hex or float as the immediate
value. That is, -1.5 can be represented as #-1.5 or #0xBFC0.

Special cases for the output from the MMAXF32 operation:

• NaN output will be converted to infinity
• A denormalized output will be converted to positive zero.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(MRa == #16FHi:0) {ZF=1; NF=0;}
if(MRa > #16FHi:0) {ZF=0; NF=0;}
if(MRa < #16FHi:0) {ZF=0; NF=1;}

Pipeline This is a single-cycle instruction.

Example MMOVIZ MR0, #5.0 ; MR0 = 5.0 (0x40A00000)
MMOVIZ MR1, #4.0 ; MR1 = 4.0 (0x40800000)
MMOVIZ MR2, #-1.5 ; MR2 = -1.5 (0xBFC00000)
MMAXF32 MR0, #5.5 ; MR0 = 5.5, ZF = 0, NF = 1
MMAXF32 MR1, #2.5 ; MR1 = 4.0, ZF = 0, NF = 0
MMAXF32 MR2, #-1.0 ; MR2 = -1.0, ZF = 0, NF = 1
MMAXF32 MR2, #-1.0 ; MR2 = -1.5, ZF = 1, NF = 0

See also MMAXF32 MRa, MRb
MMINF32 MRa, MRb
MMINF32 MRa, #16FHi

91SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MMINF32 MRa, MRb 32-bit Floating-Point Minimum

Operands
MRa CLA floating-point source/destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 0000 bbaa
MSW: 0111 1101 0100 0000

Description if(MRa > MRb) MRa = MRb;

Special cases for the output from the MMINF32 operation:

• NaN output will be converted to infinity
• A denormalized output will be converted to positive zero.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(MRa == MRb) {ZF=1; NF=0;}
if(MRa > MRb) {ZF=0; NF=0;}
if(MRa < MRb) {ZF=0; NF=1;}

Pipeline This is a single-cycle instruction.

Example 1 MMOVIZ MR0, #5.0 ; MR0 = 5.0 (0x40A00000)
MMOVIZ MR1, #4.0 ; MR1 = 4.0 (0x40800000)
MMOVIZ MR2, #-1.5 ; MR2 = -1.5 (0xBFC00000)
MMINF32 MR0, MR1 ; MR0 = 4.0, ZF = 0, NF = 0
MMINF32 MR1, MR2 ; MR1 = -1.5, ZF = 0, NF = 0
MMINF32 MR2, MR1 ; MR2 = -1.5, ZF = 1, NF = 0
MMINF32 MR1, MR0 ; MR2 = -1.5, ZF = 0, NF = 1

Example 2 ;
; X is an array of 32-bit floating-point values
; Find the minimum value in an array X
; and store it in Result
;

_Cla1Task1:
MMOVI16 MAR1,#_X ; Start address
MUI16TOF32 MR0, @_len ; Length of the array
MNOP ; delay for MAR1 load
MNOP ; delay for MAR1 load
MMOV32 MR1, *MAR1[2]++ ; MR1 = X0
LOOP
MMOV32 MR2, *MAR1[2]++ ; MR2 = next element
MMINF32 MR1, MR2 ; MR1 = MAX(MR1, MR2)
MADDF32 MR0, MR0, #-1.0 ; Decrememt the counter
MCMPF32 MR0 #0.0 ; Set/clear flags for MBCNDD
MNOP
MNOP
MNOP
MBCNDD LOOP, NEQ ; Branch if not equal to zero
MMOV32 @_Result, MR1 ; Always executed
MNOP ; Always executed
MNOP ; Always executed
MSTOP ; End of task

See also MMAXF32 MRa, MRb
MMAXF32 MRa, #16FHi
MMINF32 MRa, #16FHi

92 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MMINF32 MRa, #16FHi 32-bit Floating-Point Minimum

Operands
MRa floating-point source/destination register (MR0 to MR3)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.

Opcode LSW: IIII IIII IIII IIII
MSW: 0111 1001 0100 00aa

Description Compare MRa with the floating-point value represented by the immediate operand. If the
immidate value is smaller, then load it into MRa.
if(MRa > #16FHi:0) MRa = #16FHi:0;

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. This
addressing mode is most useful for constants where the lowest 16-bits of the mantissa
are 0. Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and
-1.5 (0xBFC00000). The assembler will accept either a hex or float as the immediate
value. That is, -1.5 can be represented as #-1.5 or #0xBFC0.

Special cases for the output from the MMINF32 operation:

• NaN output will be converted to infinity
• A denormalized output will be converted to positive zero.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

The ZF and NF flags are configured on the result of the operation, not the result stored
in the destination register.
if(MRa == #16FHi:0) {ZF=1; NF=0;}
if(MRa > #16FHi:0) {ZF=0; NF=0;}
if(MRa < #16FHi:0) {ZF=0; NF=1;}

Pipeline This is a single-cycle instruction.

Example MMOVIZ MR0, #5.0 ; MR0 = 5.0 (0x40A00000)
MMOVIZ MR1, #4.0 ; MR1 = 4.0 (0x40800000)
MMOVIZ MR2, #-1.5 ; MR2 = -1.5 (0xBFC00000)
MMINF32 MR0, #5.5 ; MR0 = 5.0, ZF = 0, NF = 1
MMINF32 MR1, #2.5 ; MR1 = 2.5, ZF = 0, NF = 0
MMINF32 MR2, #-1.0 ; MR2 = -1.5, ZF = 0, NF = 1
MMINF32 MR2, #-1.5 ; MR2 = -1.5, ZF = 1, NF = 0

See also MMAXF32 MRa, #16FHi
MMAXF32 MRa, MRb
MMINF32 MRa, MRb

93SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MMOV16 MARx, MRa, #16I Load the Auxiliary Register with MRa + 16-bit Immediate Value

Operands
MARx Auxiliary register MAR0 or MAR1

MRa CLA Floating-point register (MR0 to MR3)

#16I 16-bit immediate value

Opcode LSW: IIII IIII IIII IIII (opcode of MMOV16 MAR0, MRa, #16I)
MSW: 0111 1111 1101 00AA

LSW: IIII IIII IIII IIII (opcode of MMOV16 MAR1, MRa, #16I)
MSW: 0111 1111 1111 00AA

Description Load the auxiliary register, MAR0 or MAR1, with MRa(15:0) + 16-bit immediate value.
Refer to the pipeline section for important information regarding this instruction.
MARx = MRa(15:0) + #16I;

Flags This instruction does not modify flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction. The load of MAR0 or MAR1 will occur in the EXE
phase of the pipeline. Any post increment of MAR0 or MAR1 using indirect addressing
will occur in the D2 phase of the pipeline. Therefore the following applies when loading
the auxiliary registers:

• I1 and I2
The two instructions following MMOV16 will use MAR0/MAR1 before the update
occurs. Thus these two instructions will use the old value of MAR0 or MAR1.

• I3
Loading of an auxiliary register occurs in the EXE phase while updates due to
post-increment addressing occur in the D2 phase. Thus I3 cannot use the auxiliary
register or there will be a conflict. In the case of a conflict, the update due to
address-mode post increment will win and the auxiliary register will not be updated
with #_X.

• I4
Starting with the 4th instruction MAR0 or MAR1 will be the new value loaded with
MMOVI16.

; Assume MAR0 is 50, MR0 is 10, and #_X is 20

MMOV16 MAR0, MR0, #_X ; Load MAR0 with address of X (20) + MR0 (10)
<Instruction 1> ; I1 Will use the old value of MAR0 (50)
<Instruction 2> ; I2 Will use the old value of MAR0 (50)
<Instruction 3> ; I3 Cannot use MAR0
<Instruction 4> ; I4 Will use the new value of MAR0 (30)
<Instruction 5> ; I5

Table 28. Pipeline Activity For MMOV16 MARx, MRa , #16I

Instruction F1 F2 D1 D2 R1 R2 E W

MMOV16 MAR0, MR0, #_X MMOV16

I1 I1 MMOV16

I2 I2 I1 MMOV16

I3 I3 I2 I1 MMOV16

I4 I4 I3 I2 I1 MMOV16

I5 I5 I4 I3 I2 I1 MMOV16

MMOV1I6 I6 I5 I4 I3 I2 I1 6

94 TMS320x2803x Piccolo Control Law Accelerator (CLA)SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

Example 1 ; Calculate an offset into a sin/cos table
;
_Cla1Task1:

MMOV32 MR0,@_rad ; MR0 = rad
MMOV32 MR1,@_TABLE_SIZEDivTwoPi ; MR1 = TABLE_SIZE/(2*Pi)
MMPYF32 MR1,MR0,MR1 ; MR1 = rad* TABLE_SIZE/(2*Pi)

|| MMOV32 MR2,@_TABLE_MASK ; MR2 = TABLE_MASK
MF32TOI32 MR3,MR1 ; MR3 = K=int(rad*TABLE_SIZE/(2*Pi))
MAND32 MR3,MR3,MR2 ; MR3 = K & TABLE_MASK
MLSL32 MR3,#1 ; MR3 = K * 2

MMOV16 MAR0,MR3,#_Cos0 ; MAR0 K*2+addr of table.Cos0
MFRACF32 MR1,MR1 ; I1
MMOV32 MR0,@_TwoPiDivTABLE_SIZE ; I2
MMPYF32 MR1,MR1,MR0 ; I3

|| MMOV32 MR0,@_Coef3

MMOV32 MR2,*MAR0[#-64]++ ; MR2 = *MAR0, MAR0 += (-64)
...
...
MSTOP ; end of task

95SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

Example 2 ; This task logs the last NUM_DATA_POINTS
; ADCRESULT1 values in the array VoltageCLA
;
; When the last element in the array has been
; filled, the task will go back to the
; the first element.
;
; Before starting the ADC conversions, force
; Task 8 to initialize the ConversionCount to zero
;
_Cla1Task2:

MMOVZ16 MR0, @_ConversionCount ;I1 Current Conversion
MMOV16 MAR1, MR0, #_VoltageCLA ;I2 Next array location
MUI16TOF32 MR0, MR0 ;I3 Convert count to float32
MADDF32 MR0, MR0, #1.0 ;I4 Add 1 to conversion count
MCMPF32 MR0, #NUM_DATA_POINTS.0 ;I5 Compare count to max
MF32TOUI16 MR0, MR0 ;I6 Convert count to Uint16
MNOP ;I7 Wait till I8 to read result
MMOVZ16 MR2, @_AdcResult.ADCRESULT1 ;I8 Read ADCRESULT1
MMOV16 *MAR1, MR2 ; Store ADCRESULT1
MBCNDD _RestartCount, GEQ ; If count >= NUM_DATA_POINTS
MMOVIZ MR1, #0.0 ; Always executed: MR1=0
MNOP
MNOP
MMOV16 @_ConversionCount, MR0 ; If branch not taken
MSTOP ; store current count

_RestartCount
MMOV16 @_ConversionCount, MR1 ; If branch taken, restart count
MSTOP ; end of task

; This task initializes the ConversionCount
; to zero
;
_Cla1Task8:

MMOVIZ MR0, #0.0
MMOV16 @_ConversionCount, MR0
MSTOP

_ClaT8End:

See also

96 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MMOV16 MARx, mem16 Load MAR1 with 16-bit Value

Operands
MARx CLA auxiliary register MAR0 or MAR1

mem16 16-bit destination memory accessed using indirect or direct addressing modes

Opcode LSW: mmmm mmmm mmmm mmmm (Opcode for MMOV16 MAR0, mem16)
MSW: 0111 0110 0000 addr

LSW: mmmm mmmm mmmm mmmm (Opcode for MMOV16 MAR1, mem16)
MSW: 0111 0110 0100 addr

Description Load MAR0 or MAR1 with the 16-bit value pointed to by mem16. Refer to the pipeline
section for important information regarding this instruction.
MAR1 = [mem16];

Flags No flags MSTF flags are affected.
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction. The load of MAR0 or MAR1 will occur in the EXE
phase of the pipeline. Any post increment of MAR0 or MAR1 using indirect addressing
will occur in the D2 phase of the pipeline. Therefore the following applies when loading
the auxiliary registers:

• I1 and I2
The two instructions following MMOV16 will use MAR0/MAR1 before the update
occurs. Thus these two instructions will use the old value of MAR0 or MAR1.

• I3
Loading of an auxiliary register occurs in the EXE phase while updates due to
post-increment addressing occur in the D2 phase. Thus I3 cannot use the auxiliary
register or there will be a conflict. In the case of a conflict, the update due to
address-mode post increment will win snd the auxiliary register will not be updated
with #_X.

• I4
Starting with the 4th instruction MAR0 or MAR1 will be the new value loaded with
MMOV16.

; Assume MAR0 is 50 and @_X is 20

MMOV16 MAR0, @_X ; Load MAR0 with the contents of X (20)
<Instruction 1> ; I1 Will use the old value of MAR0 (50)
<Instruction 2> ; I2 Will use the old value of MAR0 (50)
<Instruction 3> ; I3 Cannot use MAR0
<Instruction 4> ; I4 Will use the new value of MAR0 (20)
<Instruction 5> ; I5
....

Table 29. Pipeline Activity For MMOV16 MAR0/MAR1, mem16

Instruction F1 F2 D1 D2 R1 R2 E W

MMOV16 MAR0, @_X MMOV16

I1 I1 MMOV16

I2 I2 I1 MMOV16

I3 I3 I2 I1 MMOV16

I4 I4 I3 I2 I1 MMOV16

I5 I5 I4 I3 I2 I1 MMOV16

MMOV1I6 I6 I5 I4 I3 I2 I1 6

97SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

Example ; This task logs the last NUM_DATA_POINTS
; ADCRESULT1 values in the array VoltageCLA
;
; When the last element in the array has been
; filled, the task will go back to the
; the first element.
;
; Before starting the ADC conversions, force
; Task 8 to initialize the ConversionCount to zero
;
_Cla1Task2:

MMOVZ16 MR0, @_ConversionCount ;I1 Current Conversion
MMOV16 MAR1, MR0, #_VoltageCLA ;I2 Next array location
MUI16TOF32 MR0, MR0 ;I3 Convert count to float32
MADDF32 MR0, MR0, #1.0 ;I4 Add 1 to conversion count
MCMPF32 MR0, #NUM_DATA_POINTS.0 ;I5 Compare count to max
MF32TOUI16 MR0, MR0 ;I6 Convert count to Uint16
MNOP ;I7 Wait till I8 to read result
MMOVZ16 MR2, @_AdcResult.ADCRESULT1 ;I8 Read ADCRESULT1
MMOV16 *MAR1, MR2 ; Store ADCRESULT1
MBCNDD _RestartCount, GEQ ; If count >= NUM_DATA_POINTS
MMOVIZ MR1, #0.0 ; Always executed: MR1=0
MNOP
MNOP
MMOV16 @_ConversionCount, MR0 ; If branch not taken MSTOP

; store current count
_RestartCount

MMOV16 @_ConversionCount, MR1 ; If branch taken, restart count
MSTOP ; end of task

; This task initializes the ConversionCount
; to zero
;
_Cla1Task8:

MMOVIZ MR0, #0.0
MMOV16 @_ConversionCount, MR0
MSTOP

_ClaT8End:

See also

98 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MMOV16 mem16, MARx Move 16-bit Auxiliary Register Contents to Memory

Operands
mem16 16-bit destination memory accessed using indirect or direct addressing modes

MARx CLA auxiliary register MAR0 or MAR1

Opcode LSW: mmmm mmmm mmmm mmmm (Opcode for MMOV16 mem16, MAR0)
MSW: 0111 0110 1000 addr

LSW: mmmm mmmm mmmm mmmm (Opcode for MMOV16 mem16, MAR1)
MSW: 0111 0110 1100 addr

Description Store the contents of MAR0 or MAR1 in the 16-bit memory location pointed to by
mem16.
[mem16] = MAR0;

Flags No flags MSTF flags are affected.
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example

See also

99SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MMOV16 mem16, MRa Move 16-bit Floating-Point Register Contents to Memory

Operands
mem16 16-bit destination memory accessed using indirect or direct addressing modes

MRa CLA floating-point source register (MR0 to MR3)

Opcode LSW: mmmm mmmm mmmm mmmm
MSW: 0111 0101 11aa addr

Description Move 16-bit value from the lower 16-bits of the floating-point register (MRa(15:0)) to the
location pointed to by mem16.
[mem16] = MRa(15:0);

Flags No flags MSTF flags are affected.
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example ; This task logs the last NUM_DATA_POINTS
; ADCRESULT1 values in the array VoltageCLA
;
; When the last element in the array has been
; filled, the task will go back to the
; the first element.
;
; Before starting the ADC conversions, force
; Task 8 to initialize the ConversionCount to zero
;
_Cla1Task2:
MMOVZ16 MR0, @_ConversionCount ;I1 Current Conversion
MMOV16 MAR1, MR0, #_VoltageCLA ;I2 Next array location
MUI16TOF32 MR0, MR0 ;I3 Convert count to float32
MADDF32 MR0, MR0, #1.0 ;I4 Add 1 to conversion count
MCMPF32 MR0, #NUM_DATA_POINTS.0 ;I5 Compare count to max
MF32TOUI16 MR0, MR0 ;I6 Convert count to Uint16
MNOP ;I7 Wait till I8 to read result
MMOVZ16 MR2, @_AdcResult.ADCRESULT1 ;I8 Read ADCRESULT1
MMOV16 *MAR1, MR2 ; Store ADCRESULT1
MBCNDD _RestartCount, GEQ ; If count >= NUM_DATA_POINTS
MMOVIZ MR1, #0.0 ; Always executed: MR1=0
MNOP
MNOP
MMOV16 @_ConversionCount, MR0 ; If branch not taken MSTOP

; store current count
_RestartCount

MMOV16 @_ConversionCount, MR1 ; If branch taken, restart count
MSTOP ; end of task

; This task initializes the ConversionCount
; to zero
;
_Cla1Task8:

MMOVIZ MR0, #0.0
MMOV16 @_ConversionCount, MR0
MSTOP

_ClaT8End:

See also MMOVIZ MRa, #16FHiHex
MMOVXI MRa, #16FLoHex

100 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MMOV32 mem32, MRa Move 32-bit Floating-Point Register Contents to Memory

Operands
MRa floating-point register (MR0 to MR3)

mem32 32-bit destination memory accessed using indirect or direct addressing modes

Opcode LSW: mmmm mmmm mmmm mmmm
MSW: 0111 0100 11aa addr

Description Move from MRa to 32-bit memory location indicated by mem32.
[mem32] = MRa;

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No No No

No flags affected.

Pipeline This is a single-cycle instruction.

Example ; Perform 5 multiply and accumulate operations:
;
; X and Y are 32-bit floating point arrays;
; 1st multiply: A = X0 * Y0
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4th multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3;
; Result = A + B + C + D + E
;
_Cla1Task1:

MMOVI16 MAR0, #_X ; MAR0 points to X array
MMOVI16 MAR1, #_Y ; MAR1 points to Y array
MNOP ; Delay for MAR0, MAR1 load
MNOP ; Delay for MAR0, MAR1 load

; <-- MAR0 valid
MMOV32 MR0, *MAR0[2]++ ; MR0 = X0, MAR0 += 2

; <-- MAR1 valid
MMOV32 MR1, *MAR1[2]++ ; MR1 = Y0, MAR1 += 2
MMPYF32 MR2, MR0, MR1 ; MR2 = A = X0 * Y0

|| MMOV32 MR0, *MAR0[2]++ ; In parallel MR0 = X1, MAR0 += 2
MMOV32 MR1, *MAR1[2]++ ; MR1 = Y1, MAR1 += 2
MMPYF32 MR3, MR0, MR1 ; MR3 = B = X1 * Y1

|| MMOV32 MR0, *MAR0[2]++ ; In parallel MR0 = X2, MAR0 += 2
MMOV32 MR1, *MAR1[2]++ ; MR1 = Y2, MAR2 += 2

MMACF32 MR3, MR2, MR2, MR0, MR1 ; MR3 = A + B, MR2 = C = X2 * Y2
|| MMOV32 MR0, *MAR0[2]++ ; In parallel MR0 = X3

MMOV32 MR1, *MAR1[2]++ ; MR1 = Y3

MMACF32 MR3, MR2, MR2, MR0, MR1 ; MR3 = (A + B) + C, MR2 = D = X3 * Y3
|| MMOV32 MR0, *MAR0 ; In parallel MR0 = X4

MMOV32 MR1, *MAR1 ; MR1 = Y4
MMPYF32 MR2, MR0, MR1 ; MR2 = E = X4 * Y4

|| MADDF32 MR3, MR3, MR2 ; in parallel MR3 = (A + B + C) + D
MADDF32 MR3, MR3, MR2 ; MR3 = (A + B + C + D) + E
MMOV32 @_Result, MR3 ; Store the result MSTOP ; end of task

See also MMOV32 mem32, MSTF

101SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MMOV32 mem32, MSTF Move 32-bit MSTF Register to Memory

Operands
MSTF floating-point status register

mem32 32-bit destination memory

Opcode LSW: mmmm mmmm mmmm mmmm
MSW: 0111 0111 0100 addr

Description Copy the CLA's floating-point status register, MSTF, to memory.
[mem32] = MSTF;

Flags This instruction does not modify flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example

See also MMOV32 mem32, MRa

102 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MMOV32 MRa, mem32 {, CNDF} Conditional 32-bit Move

Operands
MRa CLA floating-point destination register (MR0 to MR3)

mem32 32-bit memory location accessed using direct or indirect addressing

CNDF optional condition.

Opcode LSW: mmmm mmmm mmmm mmmm
MSW: 0111 00cn dfaa addr

Description If the condition is true, then move the 32-bit value referenced by mem32 to the
floating-point register indicated by MRa.
if (CNDF == TRUE) MRa = [mem32];

CNDF is one of the following conditions:
Encode (1) CNDF Description MSTF Flags Tested

0000 NEQ Not equal to zero ZF == 0

0001 EQ Equal to zero ZF == 1

0010 GT Greater than zero ZF == 0 AND NF == 0

0011 GEQ Greater than or equal to zero NF == 0

0100 LT Less than zero NF == 1

0101 LEQ Less than or equal to zero ZF == 1 OR NF == 1

1010 TF Test flag set TF == 1

1011 NTF Test flag not set TF == 0

1100 LU Latched underflow LUF == 1

1101 LV Latched overflow LVF == 1

1110 UNC Unconditional None

1111 UNCF (2) Unconditional with flag None
modification

(1) Values not shown are reserved.
(2) This is the default operation if no CNDF field is specified. This condition will allow the ZF and NF flags to

be modified when a conditional operation is executed. All other conditions will not modify these flags.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

if(CNDF == UNCF)
{

NF = MRa(31);
ZF = 0;
if(MRa(30:23) == 0) { ZF = 1; NF = 0; }

}
else No flags modified;

Pipeline This is a single-cycle instruction.

103SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

Example ; Given A, B, X, M1 and M2 are 32-bit floating-point
; numbers
;
; if(A > B) calculate Y = X*M1
; if(A < B) calculate Y = X*M2
;
_Cla1Task5:

MMOV32 MR0, @_A
MMOV32 MR1, @_B
MCMPF32 MR0, MRB
MMOV32 MR2, @_M1, EQ ; if A > B, MR2 = M1

; Y = M1*X
MMOV32 MR2, @_M2, NEQ ; if A < B, MR2 = M2

; Y = M2*X
MMOV32 MR3, @_X
MMPYF32 MR3, MR2, MR3 ; Calculate Y
MMOV32 @_Y, MR3 ; Store Y
MSTOP ; end of task

See also MMOV32 MRa, MRb {, CNDF}
MMOVD32 MRa, mem32

104 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MMOV32 MRa, MRb {, CNDF} Conditional 32-bit Move

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

CNDF optional condition.

Opcode LSW: 0000 0000 cndf bbaa
MSW: 0111 1010 1100 0000

Description If the condition is true, then move the 32-bit value in MRb to the floating-point register
indicated by MRa.
if (CNDF == TRUE) MRa = MRb;

CNDF is one of the following conditions:
Encode (3) CNDF Description MSTF Flags Tested

0000 NEQ Not equal to zero ZF == 0

0001 EQ Equal to zero ZF == 1

0010 GT Greater than zero ZF == 0 AND NF == 0

0011 GEQ Greater than or equal to zero NF == 0

0100 LT Less than zero NF == 1

0101 LEQ Less than or equal to zero ZF == 1 OR NF == 1

1010 TF Test flag set TF == 1

1011 NTF Test flag not set TF == 0

1100 LU Latched underflow LUF == 1

1101 LV Latched overflow LVF == 1

1110 UNC Unconditional None

1111 UNCF (4) Unconditional with flag None
modification

(3) Values not shown are reserved.
(4) This is the default operation if no CNDF field is specified. This condition will allow the ZF, and NF flags to

be modified when a conditional operation is executed. All other conditions will not modify these flags.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

if(CNDF == UNCF)
{
NF = MRa(31); ZF = 0;
if(MRa(30:23) == 0) {ZF = 1; NF = 0;}

}
else No flags modified;

Pipeline This is a single-cycle instruction.

105SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

Example ; Given: X = 8.0
; Y = 7.0
; A = 2.0
; B = 5.0
; _ClaTask1

MMOV32 MR3, @_X ; MR3 = X = 8.0
MMOV32 MR0, @_Y ; MR0 = Y = 7.0
MMAXF32 MR3, MR0 ; ZF = 0, NF = 0, MR3 = 8.0
MMOV32 MR1, @_A, GT ; true, MR1 = A = 2.0
MMOV32 MR1, @_B, LT ; false, does not load MR1
MMOV32 MR2, MR1, GT ; true, MR2 = MR1 = 2.0
MMOV32 MR2, MR0, LT ; false, does not load MR2
MSTOP

See also MMOV32 MRa, mem32{, CNDF}

106 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MMOV32 MSTF, mem32 Move 32-bit Value from Memory to the MSTF Register

Operands
MSTF CLA status register

mem32 32-bit source memory location

Opcode LSW: mmmm mmmm mmmm mmmm
MSW: 0111 0111 0000 addr

Description Move from memory to the CLA's status register MSTF. This instruction is most useful
when nesting function calls (via MCCNDD).
MSTF = [mem32];

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified Yes Yes Yes Yes Yes

Loading the status register will overwrite all flags and the RPC field. The MEALLOW field
is not affected.

Pipeline This is a single-cycle instruction.

Example

See also MMOV32 mem32, MSTF

107SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MMOVD32 MRa, mem32 Move 32-bit Value from Memory with Data Copy

Operands
MRa CLA floating-point register (MR0 to MR3)

mem32 32-bit memory location accessed using direct or indirect addressing

Opcode LSW: mmmm mmmm mmmm mmmm
MSW: 0111 0100 00aa addr

Description Move the 32-bit value referenced by mem32 to the floating-point register indicated by
MRa.
MRa = [mem32];
[mem32+2] = [mem32];

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

NF = MRa(31);
ZF = 0;
if(MRa(30:23) == 0){ ZF = 1; NF = 0; }

Pipeline This is a single-cycle instruction.

Example ; sum = X0*B0 + X1*B1 + X2*B2 + Y1*A1 + Y2*B2
;
; X2 = X1
; X1 = X0
; Y2 = Y1
; Y1 = sum
;
_Cla1Task2:

MMOV32 MR0, @_B2 ; MR0 = B2
MMOV32 MR1, @_X2 ; MR1 = X2
MMPYF32 MR2, MR1, MR0 ; MR2 = X2*B2

|| MMOV32 MR0, @_B1 ; MR0 = B1
MMOVD32 MR1, @_X1 ; MR1 = X1, X2 = X1
MMPYF32 MR3, MR1, MR0 ; MR3 = X1*B1

|| MMOV32 MR0, @_B0 ; MR0 = B0
MMOVD32 MR1, @_X0 ; MR1 = X0, X1 = X0

; MR3 = X1*B1 + X2*B2, MR2 = X0*B0
; MR0 = A2

MMACF32 MR3, MR2, MR2, MR1, MR0
|| MMOV32 MR0, @_A2

MMOV32 MR1, @_Y2 ; MR1 = Y2

; MR3 = X0*B0 + X1*B1 + X2*B2, MR2 = Y2*A2
; MR0 = A1

MMACF32 MR3, MR2, MR2, MR1, MR0
|| MMOV32 MR0, @_A1

MMOVD32 MR1,@_Y1 ; MR1 = Y1, Y2 = Y1
MADDF32 MR3, MR3, MR2 ; MR3 = Y2*A2 + X0*B0 + X1*B1 + X2*B2

|| MMPYF32 MR2, MR1, MR0 ; MR2 = Y1*A1
MADDF32 MR3, MR3, MR2 ; MR3 = Y1*A1 + Y2*A2 + X0*B0 + X1*B1 + X2*B2
MMOV32 @_Y1, MR3 ; Y1 = MR3
MSTOP ; end of task

See also MMOV32 MRa, mem32 {,CNDF}

108 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MMOVF32 MRa, #32F Load the 32-bits of a 32-bit Floating-Point Register

Operands This instruction is an alias for MMOVIZ and MMOVXI instructions. The second operand
is translated by the assembler such that the instruction becomes:
MMOVIZ MRa, #16FHiHex MMOVXI MRa, #16FLoHex

MRa CLA floating-point destination register (MR0 to MR3)

#32F immediate float value represented in floating-point representation

Opcode LSW: IIII IIII IIII IIII (opcode of MMOVIZ MRa, #16FHiHex)
MSW: 0111 1000 0100 00aa
LSW: IIII IIII IIII IIII (opcode of MMOVXI MRa, #16FLoHex)
MSW: 0111 1000 1000 00aa

Description Note: This instruction accepts the immediate operand only in floating-point
representation. To specify the immediate value as a hex value (IEEE 32-bit floating-
point format) use the MOVI32 MRa, #32FHex instruction.

Load the 32-bits of MRa with the immediate float value represented by #32F.

#32F is a float value represented in floating-point representation. The assembler will only
accept a float value represented in floating-point representation. That is, 3.0 can only be
represented as #3.0. #0x40400000 will result in an error.
MRa = #32F;

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline Depending on #32FH, this instruction takes one or two cycles. If all of the lower 16-bits
of the IEEE 32-bit floating-point format of #32F are zeros, then the assembler will
convert MMOVF32 into only MMOVIZ instruction. If the lower 16-bits of the IEEE 32-bit
floating-point format of #32F are not zeros, then the assembler will convert MMOVF32
into MMOVIZ and MMOVXI instructions.

Example MMOVF32 MR1, #3.0 ; MR1 = 3.0 (0x40400000)
; Assembler converts this instruction as
; MMOVIZ MR1, #0x4040

MMOVF32 MR2, #0.0 ; MR2 = 0.0 (0x00000000)
; Assembler converts this instruction as
; MMOVIZ MR2, #0x0

MMOVF32 MR3, #12.265 ; MR3 = 12.625 (0x41443D71)
; Assembler converts this instruction as
; MMOVIZ MR3, #0x4144
; MMOVXI MR3, #0x3D71

See also MMOVIZ MRa, #16FHi
MMOVXI MRa, #16FLoHex
MMOVI32 MRa, #32FHex

109SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MMOVI16 MARx, #16I Load the Auxiliary Register with the 16-bit Immediate Value

Operands
MARx Auxiliary register MAR0 or MAR1

#16I 16-bit immediate value

Opcode LSW: IIII IIII IIII IIII (opcode of MMOVI16 MAR0, #16I)
MSW: 0111 1111 1100 0000

LSW: IIII IIII IIII IIII (opcode of MMOVI16 MAR1, #16I)
MSW: 0111 1111 1110 0000

Description Load the auxiliary register, MAR0 or MAR1, with a 16-bit immediate value. Refer to the
pipeline section for important information regarding this instruction.
MARx = #16I;

Flags This instruction does not modify flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction. The immediate load of MAR0 or MAR1 will occur in the
EXE phase of the pipeline. Any post increment of MAR0 or MAR1 using indirect
addressing will occur in the D2 phase of the pipeline. Therefore the following applies
when loading the auxiliary registers:

• I1 and I2
The two instructions following MMOVI16 will use MAR0/MAR1 before the update
occurs. Thus these two instructions will use the old value of MAR0 or MAR1.

• I3
Loading of an auxiliary register occurs in the EXE phase while updates due to
post-increment addressing occur in the D2 phase. Thus I3 cannot use the auxiliary
register or there will be a conflict. In the case of a conflict, the update due to
address-mode post increment will win snd the auxiliary register will not be updated
with #_X.

• I4
Starting with the 4th instruction MAR0 or MAR1 will be the new value loaded with
MMOVI16.

; Assume MAR0 is 50 and #_X is 20

MMOVI16 MAR0, #_X ; Load MAR0 with address of X (20)
<Instruction 1> ; I1 Will use the old value of MAR0 (50)
<Instruction 2> ; I2 Will use the old value of MAR0 (50)
<Instruction 3> ; I3 Cannot use MAR0
<Instruction 4> ; I4 Will use the new value of MAR0 (20)
<Instruction 5> ; I5
....

Table 30. Pipeline Activity For MMOVI16 MAR0/MAR1, #16I

Instruction F1 F2 D1 D2 R1 R2 E W

MMOVI16 MAR0, #_X MMOVI16

I1 I1 MMOVI16

I2 I2 I1 MMOVI16

I3 I3 I2 I1 MMOVI16

I4 I4 I3 I2 I1 MMOVI16

I5 I5 I4 I3 I2 I1 MMOVI16

MMOVII6 I6 I5 I4 I3 I2 I1 16

110 TMS320x2803x Piccolo Control Law Accelerator (CLA)SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MMOVI32 MRa, #32FHex Load the 32-bits of a 32-bit Floating-Point Register with the immediate

Operands
MRa floating-point register (MR0 to MR3)

#32FHex A 32-bit immediate value that represents an IEEE 32-bit floating-point value.

This instruction is an alias for MMOVIZ and MMOVXI instructions. The second operand
is translated by the assembler such that the instruction becomes:
MMOVIZ MRa, #16FHiHex
MMOVXI MRa, #16FLoHex

Opcode LSW: IIII IIII IIII IIII (opcode of MMOVIZ MRa, #16FHiHex)
MSW: 0111 1000 0100 00aa

LSW: IIII IIII IIII IIII (opcode of MMOVXI MRa, #16FLoHex)
MSW: 0111 1000 1000 00aa

Description Note: This instruction only accepts a hex value as the immediate operand. To specify the
immediate value with a floating-point representation use the MMOVF32 MRa, #32F
instruction.

Load the 32-bits of MRa with the immediate 32-bit hex value represented by #32Fhex.

#32Fhex is a 32-bit immediate hex value that represents the IEEE 32-bit floating-point
value of a floating-point number. The assembler will only accept a hex immediate value.
That is, 3.0 can only be represented as #0x40400000. #3.0 will result in an error.
MRa = #32FHex;

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline Depending on #32FHex, this instruction takes one or two cycles. If all of the lower
16-bits of #32FHex are zeros, then assembler will convert MOVI32 to the MMOVIZ
instruction. If the lower 16-bits of #32FHex are not zeros, then assembler will convert
MOVI32 to a MMOVIZ and a MMOVXI instruction.

Example MOVI32 MR1, #0x40400000 ; MR1 = 0x40400000
; Assembler converts this instruction as
; MMOVIZ MR1, #0x4040

MOVI32 MR2, #0x00000000 ; MR2 = 0x00000000
; Assembler converts this instruction as
; MMOVIZ MR2, #0x0

MOVI32 MR3, #0x40004001 ; MR3 = 0x40004001
; Assembler converts this instruction as
; MMOVIZ MR3, #0x4000
; MMOVXI MR3, #0x4001

MOVI32 MR0, #0x00004040 ; MR0 = 0x00004040
; Assembler converts this instruction as
; MMOVIZ MR0, #0x0000
; MMOVXI MR0, #0x4040

See also MMOVIZ MRa, #16FHi
MMOVXI MRa, #16FLoHex
MMOVF32 MRa, #32F

111SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MMOVIZ MRa, #16FHi Load the Upper 16-bits of a 32-bit Floating-Point Register

Operands
MRa floating-point register (MR0 to MR3)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.

Opcode LSW: IIII IIII IIII IIII
MSW: 0111 1000 0100 00aa

Description Load the upper 16-bits of MRa with the immediate value #16FHi and clear the low
16-bits of MRa.

#16FHiHex is a 16-bit immediate value that represents the upper 16-bits of an IEEE
32-bit floating-point value. The low 16-bits of the mantissa are assumed to be all 0. The
assembler will only accept a decimal or hex immediate value. That is, -1.5 can be
represented as #-1.5 or #0xBFC0.

By itself, MMOVIZ is useful for loading a floating-point register with a constant in which
the lowest 16-bits of the mantissa are 0. Some examples are 2.0 (0x40000000), 4.0
(0x40800000), 0.5 (0x3F000000), and -1.5 (0xBFC00000). If a constant requires all
32-bits of a floating-point register to be iniitalized, then use MMOVIZ along with the
MMOVXI instruction.
MRa(31:16) = #16FHi;
MRa(15:0) = 0;

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example ; Load MR0 and MR1 with -1.5 (0xBFC00000)
MMOVIZ MR0, #0xBFC0 ; MR0 = 0xBFC00000 (1.5)
MMOVIZ MR1, #-1.5 ; MR0 = -1.5 (0xBFC00000)

; Load MR2 with pi = 3.141593 (0x40490FDB)
MMOVIZ MR2, #0x4049 ; MR0 = 0x40490000
MMOVXI MR2, #0x0FDB ; MR0 = 0x40490FDB

See also MMOVF32 MRa, #32F
MMOVI32 MRa, #32FHex
MMOVXI MRa, #16FLoHex

112 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MMOVZ16 MRa, mem16 Load MRx with 16-bit Value

Operands
MRa CLA floating-point destination register (MR0 to MR3)

mem16 16-bit source memory location

Opcode LSW: mmmm mmmm mmmm mmmm
MSW: 0111 0101 10aa addr

Description Move the 16-bit value referenced by mem16 to the floating-point register indicated by
MRa.
MRa(31:16) = 0;
MRa(15:0) = [mem16];

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

The MSTF register flags are modified based on the integer results of the operation.
NF = 0;
if (MRa(31:0)== 0) { ZF = 1; }

Pipeline This is a single-cycle instruction.

113SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MMOVXI MRa, #16FLoHex Move Immediate to the Low 16-bits of a Floating-Point Register

Operands
MRa CLA floating-point register (MR0 to MR3)

#16FLoHex A 16-bit immediate hex value that represents the lower 16-bits of an IEEE 32-bit
floating-point value. The upper 16-bits will not be modified.

Opcode LSW: IIII IIII IIII IIII
MSW: 0111 1000 1000 00aa

Description Load the low 16-bits of MRa with the immediate value #16FLoHex. #16FLoHex
represents the lower 16-bits of an IEEE 32-bit floating-point value. The upper 16-bits of
MRa will not be modified. MMOVXI can be combined with the MMOVIZ instruction to
initialize all 32-bits of a MRa register.
MRa(15:0) = #16FLoHex;
MRa(31:16) = Unchanged;

Flags
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example ; Load MR0 with pi = 3.141593 (0x40490FDB)
MMOVIZ MR0,#0x4049 ; MR0 = 0x40490000
MMOVXI MR0,#0x0FDB ; MR0 = 0x40490FDB

See also MMOVIZ MRa, #16FHi

114 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MMPYF32 MRa, MRb, MRc 32-bit Floating-Point Multiply

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

MRc CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 00cc bbaa
MSW: 0111 1100 0000 0000

Description Multiply the contents of two floating-point registers.
MRa = MRb * MRc;

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MMPYF32 generates an underflow condition.
• LVF = 1 if MMPYF32 generates an overflow condition.

Pipeline This is a single-cycle instruction.

Example ; Calculate Num/Den using a Newton-Raphson algorithum for 1/Den
; Ye = Estimate(1/X)
; Ye = Ye*(2.0 - Ye*X)
; Ye = Ye*(2.0 - Ye*X)
;
_Cla1Task1:

MMOV32 MR1, @_Den ; MR1 = Den
MEINVF32 MR2, MR1 ; MR2 = Ye = Estimate(1/Den)
MMPYF32 MR3, MR2, MR1 ; MR3 = Ye*Den
MSUBF32 MR3, #2.0, MR3 ; MR3 = 2.0 - Ye*Den
MMPYF32 MR2, MR2, MR3 ; MR2 = Ye = Ye*(2.0 - Ye*Den)
MMPYF32 MR3, MR2, MR1 ; MR3 = Ye*Den

|| MMOV32 MR0, @_Num ; MR0 = Num
MSUBF32 MR3, #2.0, MR3 ; MR3 = 2.0 - Ye*Den
MMPYF32 MR2, MR2, MR3 ; MR2 = Ye = Ye*(2.0 - Ye*Den)

|| MMOV32 MR1, @_Den ; Reload Den To Set Sign
MNEGF32 MR0, MR0, EQ ; if(Den == 0.0) Change Sign Of Num
MMPYF32 MR0, MR2, MR0 ; MR0 = Y = Ye*Num
MMOV32 @_Dest, MR0 ; Store result
MSTOP ; end of task

See also MMPYF32 MRa, #16FHi, MRb
MMPYF32 MRa, MRb, MRc || MADDF32 MRd, MRe, MRf
MMPYF32 MRd, MRe, MRf || MMOV32 MRa, mem32
MMPYF32 MRd, MRe, MRf || MMOV32 mem32, MRa
MMPYF32 MRa, MRb, MRc || MSUBF32 MRd, MRe, MRf
MMACF32 MR3, MR2, MRd, MRe, MRf || MMOV32 MRa, mem32

115SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MMPYF32 MRa, #16FHi, MRb 32-bit Floating-Point Multiply

Operands
MRa CLA floating-point destination register (MR0 to MR3)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.

MRc CLA floating-point source register (MR0 to MR3)

Opcode LSW: IIII IIII IIII IIII
MSW: 0111 0111 1000 baaa

Description Multiply MRb with the floating-point value represented by the immediate operand. Store
the result of the addition in MRa.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(0xBFC00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFC0.
MRa = MRb * #16FHi:0;

This instruction can also be written as MMPYF32 MRa, MRb, #16FHi.

Flags This instruction modifies the following flags in the MSTF register:.
Flag TF ZF NF LUF LVF

Modified No No No Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MMPYF32 generates an underflow condition.
• LVF = 1 if MMPYF32 generates an overflow condition.

Pipeline This is a single-cycle instruction.

Example 1 ; Same as example 2 but #16FHi is represented in float
MMOVIZ MR3, #2.0 ; MR3 = 2.0 (0x40000000)
MMPYF32 MR0, #3.0, MR3 ; MR0 = 3.0 * MR3 = 6.0 (0x40C00000)
MMOV32 @_X, MR0 ; Save the result in variable X

Example 2 ; Same as example 1 but #16FHi is represented in Hex
MMOVIZ MR3, #2.0 ; MR3 = 2.0 (0x40000000)
MMPYF32 MR0, #0x4040, MR3 ; MR0 = 0x4040 * MR3 = 6.0 (0x40C00000)
MMOV32 @_X, MR0 ; Save the result in variable X

116 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

Example 3 ; Given X, M and B are IQ24 numbers:
; X = IQ24(+2.5) = 0x02800000
; M = IQ24(+1.5) = 0x01800000
; B = IQ24(-0.5) = 0xFF800000
;
; Calculate Y = X * M + B
;
;
_Cla1Task2:
;
; Convert M, X and B from IQ24 to float

MI32TOF32 MR0, @_M ; MR0 = 0x4BC00000
MI32TOF32 MR1, @_X ; MR1 = 0x4C200000
MI32TOF32 MR2, @_B ; MR2 = 0xCB000000
MMPYF32 MR0, MR0, #0x3380 ; M = 1/(1*2^24) * iqm = 1.5 (0x3FC00000)
MMPYF32 MR1, MR1, #0x3380 ; X = 1/(1*2^24) * iqx = 2.5 (0x40200000)
MMPYF32 MR2, MR2, #0x3380 ; B = 1/(1*2^24) * iqb = -.5 (0xBF000000)
MMPYF32 MR3, MR0, MR1 ; M*X
MADDF32 MR2, MR2, MR3 ; Y=MX+B = 3.25 (0x40500000)

; Convert Y from float32 to IQ24
MMPYF32 MR2, MR2, #0x4B80 ; Y * 1*2^24
MF32TOI32 MR2, MR2 ; IQ24(Y) = 0x03400000
MMOV32 @_Y, MR2 ; store result
MSTOP ; end of task

See also MMPYF32 MRa, MRb, #16FHi
MMPYF32 MRa, MRb, MRc
MMPYF32 MRa, MRb, MRc || MADDF32 MRd, MRe, MRf

117SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MMPYF32 MRa, MRb, #16FHi 32-bit Floating-Point Multiply

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.

Opcode LSW: IIII IIII IIII IIII
MSW: 0111 0111 1000 baaa

Description Multiply MRb with the floating-point value represented by the immediate operand. Store
the result of the addition in MRa.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(0xBFC00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFC0.
MRa = MRb * #16FHi:0;

This instruction can also be writen as MMPYF32 MRa, #16FHi, MRb.

Flags This instruction modifies the following flags in the MSTF register:.
Flag TF ZF NF LUF LVF

Modified No No No Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MMPYF32 generates an underflow condition.
• LVF = 1 if MMPYF32 generates an overflow condition.

Pipeline This is a single-cycle instruction.

Example 1 ;Same as example 2 but #16FHi is represented in float
MMOVIZ MR3, #2.0 ; MR3 = 2.0 (0x40000000)
MMPYF32 MR0, MR3, #3.0 ; MR0 = MR3 * 3.0 = 6.0 (0x40C00000)
MMOV32 @_X, MR0 ; Save the result in variable X

Example 2 ;Same as above example but #16FHi is represented in Hex
MMOVIZ MR3, #2.0 ; MR3 = 2.0 (0x40000000)
MMPYF32 MR0, MR3, #0x4040 ; MR0 = MR3 * 0x4040 = 6.0 (0x40C00000)
MMOV32 @_X, MR0 ; Save the result in variable X

118 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

Example 3 ; Given X, M and B are IQ24 numbers:
; X = IQ24(+2.5) = 0x02800000
; M = IQ24(+1.5) = 0x01800000
; B = IQ24(-0.5) = 0xFF800000
;
; Calculate Y = X * M + B
;
_Cla1Task2:
;
; Convert M, X and B from IQ24 to float

MI32TOF32 MR0, @_M ; MR0 = 0x4BC00000
MI32TOF32 MR1, @_X ; MR1 = 0x4C200000
MI32TOF32 MR2, @_B ; MR2 = 0xCB000000
MMPYF32 MR0, #0x3380, MR0 ; M = 1/(1*2^24) * iqm = 1.5 (0x3FC00000)
MMPYF32 MR1, #0x3380, MR1 ; X = 1/(1*2^24) * iqx = 2.5 (0x40200000)
MMPYF32 MR2, #0x3380, MR2 ; B = 1/(1*2^24) * iqb = -.5 (0xBF000000)
MMPYF32 MR3, MR0, MR1 ; M*X
MADDF32 MR2, MR2, MR3 ; Y=MX+B = 3.25 (0x40500000)

; Convert Y from float32 to IQ24
MMPYF32 MR2, #0x4B80, MR2 ; Y * 1*2^24
MF32TOI32 MR2, MR2 ; IQ24(Y) = 0x03400000
MMOV32 @_Y, MR2 ; store result
MSTOP ; end of task

See also MMPYF32 MRa, #16FHi, MRb
MMPYF32 MRa, MRb, MRc

119SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MMPYF32 MRa, MRb, MRc||MADDF32 MRd, MRe, MRf 32-bit Floating-Point Multiply with Parallel
Add

Operands
MRa CLA floating-point destination register for MMPYF32 (MR0 to MR3)

MRa cannot be the same register as MRd

MRb CLA floating-point source register for MMPYF32 (MR0 to MR3)

MRc CLA floating-point source register for MMPYF32 (MR0 to MR3)

MRd CLA floating-point destination register for MADDF32 (MR0 to MR3)
MRd cannot be the same register as MRa

MRe CLA floating-point source register for MADDF32 (MR0 to MR3)

MRf CLA floating-point source register for MADDF32 (MR0 to MR3)

Opcode LSW: 0000 ffee ddcc bbaa
MSW: 0111 1010 0000 0000

Description Multiply the contents of two floating-point registers with parallel addition of two registers.
MRa = MRb * MRc;
MRd = MRe + MRf;

Restrictions The destination register for the MMPYF32 and the MADDF32 must be unique. That is,
MRa cannot be the same register as MRd.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MMPYF32 or MADDF32 generates an underflow condition.
• LVF = 1 if MMPYF32 or MADDF32 generates an overflow condition.

Pipeline Both MMPYF32 and MADDF32 complete in a single cycle.

120 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

Example ; Perform 5 multiply and accumulate operations:
;
; X and Y are 32-bit floating point arrays
;
; 1st multiply: A = X0 * Y0
; 2nd multiply: B = X1 * Y1
; 3rd multiply: C = X2 * Y2
; 4th multiply: D = X3 * Y3
; 5th multiply: E = X3 * Y3
;
; Result = A + B + C + D + E
;
_Cla1Task1:

MMOVI16 MAR0, #_X ; MAR0 points to X array
MMOVI16 MAR1, #_Y ; MAR1 points to Y array
MNOP ; Delay for MAR0, MAR1 load
MNOP ; Delay for MAR0, MAR1 load

; <-- MAR0 valid
MMOV32 MR0, *MAR0[2]++ ; MR0 = X0, MAR0 += 2

; <-- MAR1 valid
MMOV32 MR1, *MAR1[2]++ ; MR1 = Y0, MAR1 += 2

MMPYF32 MR2, MR0, MR1 ; MR2 = A = X0 * Y0
|| MMOV32 MR0, *MAR0[2]++ ; In parallel MR0 = X1, MAR0 += 2

MMOV32 MR1, *MAR1[2]++ ; MR1 = Y1, MAR1 += 2

MMPYF32 MR3, MR0, MR1 ; MR3 = B = X1 * Y1
|| MMOV32 MR0, *MAR0[2]++ ; In parallel MR0 = X2, MAR0 += 2

MMOV32 MR1, *MAR1[2]++ ; MR1 = Y2, MAR2 += 2

MMACF32 MR3, MR2, MR2, MR0, MR1 ; MR3 = A + B, MR2 = C = X2 * Y2
|| MMOV32 MR0, *MAR0[2]++ ; In parallel MR0 = X3

MMOV32 MR1, *MAR1[2]++ ; MR1 = Y3

MMACF32 MR3, MR2, MR2, MR0, MR1 ; MR3 = (A + B) + C, MR2 = D = X3 * Y3
|| MMOV32 MR0, *MAR0 ; In parallel MR0 = X4

MMOV32 MR1, *MAR1 ; MR1 = Y4

MMPYF32 MR2, MR0, MR1 ; MR2 = E = X4 * Y4
|| MADDF32 MR3, MR3, MR2 ; in parallel MR3 = (A + B + C) + D

MADDF32 MR3, MR3, MR2 ; MR3 = (A + B + C + D) + E
MMOV32 @_Result, MR3 ; Store the result
MSTOP ; end of task

See also MMACF32 MR3, MR2, MRd, MRe, MRf || MMOV32 MRa, mem32

121SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MMPYF32 MRd, MRe, MRf ||MMOV32 MRa, mem32 32-bit Floating-Point Multiply with Parallel Move

Operands
MRd CLA floating-point destination register for the MMPYF32 (MR0 to MR3)

MRd cannot be the same register as MRa

MRe CLA floating-point source register for the MMPYF32 (MR0 to MR3)

MRf CLA floating-point source register for the MMPYF32 (MR0 to MR3)

MRa CLA floating-point destination register for the MMOV32 (MR0 to MR3)
MRa cannot be the same register as MRd

mem32 32-bit memory location accessed using direct or indirect addressing. This will be the
source of the MMOV32.

Opcode LSW: mmmm mmmm mmmm mmmm
MSW: 0000 ffee ddaa addr

Description Multiply the contents of two floating-point registers and load another.
MRd = MRe * MRf;
MRa = [mem32];

Restrictions The destination register for the MMPYF32 and the MMOV32 must be unique. That is,
MRa cannot be the same register as MRd.

Flags This instruction modifies the following flags in the MSTF register:.
Flag TF ZF NF LUF LVF

Modified No Yes Yes Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MMPYF32 generates an underflow condition.
• LVF = 1 if MMPYF32 generates an overflow condition.

The MMOV32 Instruction will set the NF and ZF flags as follows:
NF = MRa(31);
ZF = 0;
if(MRa(30:23) == 0) { ZF = 1; NF = 0; }

Pipeline Both MMPYF32 and MMOV32 complete in a single cycle.

Example 1 ; Given M1, X1 and B1 are 32-bit floating point
; Calculate Y1 = M1*X1+B1
;
_Cla1Task1:

MMOV32 MR0, @M1 ; Load MR0 with M1
MMOV32 MR1, @X1 ; Load MR1 with X1
MMPYF32 MR1, MR1, MR0 ; Multiply M1*X1

|| MMOV32 MR0, @B1 ; and in parallel load MR0 with B1
MADDF32 MR1, MR1, MR0 ; Add M*X1 to B1 and store in MR1
MMOV32 @Y1, MR1 ; Store the result
MSTOP ; end of task

122 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

Example 2 ; Given A, B and C are 32-bit floating-point numbers
; Calculate Y2 = (A * B)
; Y3 = (A * B) * C
;
_Cla1Task2:

MMOV32 MR0, @A ; Load MR0 with A
MMOV32 MR1, @B ; Load MR1 with B
MMPYF32 MR1, MR1, MR0 ; Multiply A*B

|| MMOV32 MR0, @C ; and in parallel load MR0 with C
MMPYF32 MR1, MR1, MR0 ; Multiply (A*B) by C

|| MMOV32 @Y2, MR1 ; and in parallel store A*B
MMOV32 @Y3, MR1 ; Store the result
MSTOP ; end of task

See also MMPYF32 MRd, MRe, MRf || MMOV32 mem32, MRa
MMACF32 MR3, MR2, MRd, MRe, MRf || MMOV32 MRa, mem32

123SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MMPYF32 MRd, MRe, MRf ||MMOV32 mem32, MRa 32-bit Floating-Point Multiply with Parallel Move

Operands
MRd CLA floating-point destination register for the MMPYF32 (MR0 to MR3)

MRe CLA floating-point source register for the MMPYF32 (MR0 to MR3)

MRf CLA floating-point source register for the MMPYF32 (MR0 to MR3)

mem32 32-bit memory location accessed using direct or indirect addressing. This will be the
destination of the MMOV32.

MRa CLA floating-point source register for the MMOV32 (MR0 to MR3)

Opcode LSW: mmmm mmmm mmmm mmmm
MSW: 0100 ffee ddaa addr

Description Multiply the contents of two floating-point registers and move from memory to register.
MRd = MRe * MRf;
[mem32] = MRa;

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MMPYF32 generates an underflow condition.
• LVF = 1 if MMPYF32 generates an overflow condition.

Pipeline MMPYF32 and MMOV32 both complete in a single cycle.

Example ; Given A, B and C are 32-bit floating-point numbers
; Calculate Y2 = (A * B)
; Y3 = (A * B) * C
;
_Cla1Task2:

MMOV32 MR0, @A ; Load MR0 with A
MMOV32 MR1, @B ; Load MR1 with B
MMPYF32 MR1, MR1, MR0 ; Multiply A*B

|| MMOV32 MR0, @C ; and in parallel load MR0 with C
MMPYF32 MR1, MR1, MR0 ; Multiply (A*B) by C

|| MMOV32 @Y2, MR1 ; and in parallel store A*B
MMOV32 @Y3, MR1 ; Store the result
MSTOP ; end of task

See also MMPYF32 MRd, MRe, MRf || MMOV32 MRa, mem32
MMACF32 MR3, MR2, MRd, MRe, MRf || MMOV32 MRa, mem32

124 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MMPYF32 MRa, MRb, MRc ||MSUBF32 MRd, MRe, MRf 32-bit Floating-Point Multiply with Parallel
Subtract

Operands
MRa CLA floating-point destination register for MMPYF32 (MR0 to MR3)

MRa cannot be the same register as MRd

MRb CLA floating-point source register for MMPYF32 (MR0 to MR3)

MRc CLA floating-point source register for MMPYF32 (MR0 to MR3)

MRd CLA floating-point destination register for MSUBF32 (MR0 to MR3)
MRd cannot be the same register as MRa

MRe CLA floating-point source register for MSUBF32 (MR0 to MR3)

MRf CLA floating-point source register for MSUBF32 (MR0 to MR3)

Opcode LSW: 0000 ffee ddcc bbaa
MSW: 0111 1010 0100 0000

Description Multiply the contents of two floating-point registers with parallel subtraction of two
registers.
MRa = MRb * MRc;
MRd = MRe - MRf;

Restrictions The destination register for the MMPYF32 and the MSUBF32 must be unique. That is,
MRa cannot be the same register as MRd.

Flags This instruction modifies the following flags in the MSTF register:.
Flag TF ZF NF LUF LVF

Modified No No No Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MMPYF32 or MSUBF32 generates an underflow condition.
• LVF = 1 if MMPYF32 or MSUBF32 generates an overflow condition.

Pipeline MMPYF32 and MSUBF32 both complete in a single cycle.

Example ; Given A, B and C are 32-bit floating-point numbers
; Calculate Y2 = (A * B)
; Y3 = (A - B)
;
_Cla1Task2:

MMOV32 MR0, @A ; Load MR0 with A
MMOV32 MR1, @B ; Load MR1 with B
MMPYF32 MR2, MR0, MR1 ; Multiply (A*B)

|| MSUBF32 MR3, MR0, MR1 ; and in parallel Sub (A-B)
MMOV32 @Y2, MR2 ; Store A*B
MMOV32 @Y3, MR3 ; Store A-B
MSTOP ; end of task

See also MSUBF32 MRa, MRb, MRc
MSUBF32 MRd, MRe, MRf || MMOV32 MRa, mem32
MSUBF32 MRd, MRe, MRf || MMOV32 mem32, MRa

125SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MNEGF32 MRa, MRb{, CNDF} Conditional Negation

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

CNDF condition tested

Opcode LSW: 0000 0000 cndf bbaa
MSW: 0111 1010 1000 0000

Description if (CNDF == true) {MRa = - MRb; }
else {MRa = MRb; }

CNDF is one of the following conditions:
Encode (5) CNDF Description MSTF Flags Tested

0000 NEQ Not equal to zero ZF == 0

0001 EQ Equal to zero ZF == 1

0010 GT Greater than zero ZF == 0 AND NF == 0

0011 GEQ Greater than or equal to zero NF == 0

0100 LT Less than zero NF == 1

0101 LEQ Less than or equal to zero ZF == 1 OR NF == 1

1010 TF Test flag set TF == 1

1011 NTF Test flag not set TF == 0

1100 LU Latched underflow LUF == 1

1101 LV Latched overflow LVF == 1

1110 UNC Unconditional None

1111 UNCF (6) Unconditional with flag None
modification

(5) Values not shown are reserved.
(6) This is the default operation if no CNDF field is specified. This condition will allow the ZF, and NF flags to

be modified when a conditional operation is executed. All other conditions will not modify these flags.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

Pipeline This is a single-cycle instruction.

Example 1
; Show the basic operation of MNEGF32
;

MMOVIZ MR0, #5.0 ; MR0 = 5.0 (0x40A00000)
MMOVIZ MR1, #4.0 ; MR1 = 4.0 (0x40800000)
MMOVIZ MR2, #-1.5 ; MR2 = -1.5 (0xBFC00000)
MMPYF32 MR3, MR1, MR2 ; MR3 = -6.0
MMPYF32 MR0, MR0, MR1 ; MR0 = 20.0
MMOVIZ MR1, #0.0
MCMPF32 MR3, MR1 ; NF = 1
MNEGF32 MR3, MR3, LT ; if NF = 1, MR3 = 6.0
MCMPF32 MR0, MR1 ; NF = 0
MNEGF32 MR0, MR0, GEQ ; if NF = 0, MR0 = -20.0

126 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

Example 2 ; Calculate Num/Den using a Newton-Raphson algorithum for 1/Den
; Ye = Estimate(1/X)
; Ye = Ye*(2.0 - Ye*X)
; Ye = Ye*(2.0 - Ye*X)
;
_Cla1Task1:

MMOV32 MR1, @_Den ; MR1 = Den
MEINVF32 MR2, MR1 ; MR2 = Ye = Estimate(1/Den)
MMPYF32 MR3, MR2, MR1 ; MR3 = Ye*Den
MSUBF32 MR3, #2.0, MR3 ; MR3 = 2.0 - Ye*Den
MMPYF32 MR2, MR2, MR3 ; MR2 = Ye = Ye*(2.0 - Ye*Den)
MMPYF32 MR3, MR2, MR1 ; MR3 = Ye*Den

|| MMOV32 MR0, @_Num ; MR0 = Num
MSUBF32 MR3, #2.0, MR3 ; MR3 = 2.0 - Ye*Den
MMPYF32 MR2, MR2, MR3 ; MR2 = Ye = Ye*(2.0 - Ye*Den)

|| MMOV32 MR1, @_Den ; Reload Den To Set Sign
MNEGF32 MR0, MR0, EQ ; if(Den == 0.0) Change Sign Of Num
MMPYF32 MR0, MR2, MR0 ; MR0 = Y = Ye*Num
MMOV32 @_Dest, MR0 ; Store result
MSTOP ; end of task

See also MABSF32 MRa, MRb

127SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MNOP No Operation

Operands
none This instruction does not have any operands

Opcode LSW: 0000 0000 0000 0000
MSW: 0111 1111 1010 0000

Description Do nothing. This instruction is used to fill required pipeline delay slots when other
instructions are not available to fill the slots.

Flags This instruction does not modify flags in the MSTF register.
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example ; X is an array of 32-bit floating-point values
; Find the maximum value in an array X
; and store it in Result
;
_Cla1Task1:

MMOVI16 MAR1,#_X ; Start address
MUI16TOF32 MR0, @_len ; Length of the array
MNOP ; delay for MAR1 load
MNOP ; delay for MAR1 load
MMOV32 MR1, *MAR1[2]++ ; MR1 = X0

LOOP
MMOV32 MR2, *MAR1[2]++ ; MR2 = next element
MMAXF32 MR1, MR2 ; MR1 = MAX(MR1, MR2)
MADDF32 MR0, MR0, #-1.0 ; Decrememt the counter
MCMPF32 MR0 #0.0 ; Set/clear flags for MBCNDD
MNOP ; Too late to affect MBCNDD
MNOP ; Too late to affect MBCNDD
MNOP ; Too late to affect MBCNDD
MBCNDD LOOP, NEQ ; Branch if not equal to zero
MMOV32 @_Result, MR1 ; Always executed
MNOP ; Pad to seperate MBCNDD and MSTOP
MNOP ; Pad to seperate MBCNDD and MSTOP
MSTOP ; End of task

See also

128 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MOR32 MRa, MRb, MRc Bitwise OR

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

MRc CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 00cc bbaa
MSW: 0111 1100 1000 0000

Description Bitwise OR of MRb with MRc.
MARa(31:0) = MARb(31:0) OR MRc(31:0);

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

The MSTF register flags are modified based on the integer results of the operation.
NF = MRa(31);
ZF = 0;
if(MRa(31:0) == 0) { ZF = 1; }

Pipeline This is a single-cycle instruction.

Example
MMOVIZ MR0, #0x5555 ; MR0 = 0x5555AAAA
MMOVXI MR0, #0xAAAA

MMOVIZ MR1, #0x5432 ; MR1 = 0x5432FEDC
MMOVXI MR1, #0xFEDC

; 0101 OR 0101 = 0101 (5)
; 0101 OR 0100 = 0101 (5)
; 0101 OR 0011 = 0111 (7)
; 0101 OR 0010 = 0111 (7)
; 1010 OR 1111 = 1111 (F)
; 1010 OR 1110 = 1110 (E)
; 1010 OR 1101 = 1111 (F)
; 1010 OR 1100 = 1110 (E)

MOR32 MR2, MR1, MR0 ; MR3 = 0x5555FEFE

See also MAND32 MRa, MRb, MRc
MXOR32 MRa, MRb, MRc

129SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MRCNDD {CNDF} Return Conditional Delayed

Operands
CNDF optional condition.

Opcode LSW: 0000 0000 0000 0000
MSW: 0111 1001 1010 cndf

Description If the specified condition is true, then the RPC field of MSTF is loaded into MPC and
fetching continues from that location. Otherwise program fetches will continue without
the return.

Please refer to the pipeline section for important information regarding this instruction.
if (CNDF == TRUE) MPC = RPC;

CNDF is one of the following conditions:
Encode (7) CNDF Description MSTF Flags Tested

0000 NEQ Not equal to zero ZF == 0

0001 EQ Equal to zero ZF == 1

0010 GT Greater than zero ZF == 0 AND NF == 0

0011 GEQ Greater than or equal to zero NF == 0

0100 LT Less than zero NF == 1

0101 LEQ Less than or equal to zero ZF == 1 OR NF == 1

1010 TF Test flag set TF == 1

1011 NTF Test flag not set TF == 0

1100 LU Latched underflow LUF == 1

1101 LV Latched overflow LVF == 1

1110 UNC Unconditional None

1111 UNCF (8) Unconditional with flag None
modification

(7) Values not shown are reserved.
(8) This is the default operation if no CNDF field is specified. This condition will allow the ZF and NF flags to

be modified when a conditional operation is executed. All other conditions will not modify these flags.

Flags This instruction does not modify flags in the MSTF register.
Flag TF ZF NF LUF LVF

Modified No No No No No

130 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

Pipeline The MRCNDD instruction by itself is a single-cycle instruction. As shown in Table 31, for
each return 6 instruction slots are executed; three before the return instruction (d5-d7)
and three after the return instruction (d8-d10). The total number of cycles for a return
taken or not taken depends on the usage of these slots. That is, the number of cycles
depends on how many slots are filled with a MNOP as well as which slots are filled. The
effective number of cycles for a return can, therefore, range from 1 to 7 cycles. The
number of cycles for a return taken may not be the same as for a return not taken.

Referring to the following code fragment and the pipeline diagrams in Table 31 and
Table 32, the instructions before and after MRCNDD have the following properties:

;
;
<Instruction 1> ; I1 Last instruction that can affect flags for

; the MCCNDD operation
<Instruction 2> ; I2 Cannot be stop, branch, call or return
<Instruction 3> ; I3 Cannot be stop, branch, call or return
<Instruction 4> ; I4 Cannot be stop, branch, call or return

MCCNDD _func, NEQ ; Call to func if not eqal to zero
; Three instructions after MCCNDD are always
; executed whether the call is taken or not

<Instruction 5> ; I5 Cannot be stop, branch, call or return
<Instruction 6> ; I6 Cannot be stop, branch, call or return
<Instruction 7> ; I7 Cannot be stop, branch, call or return
<Instruction 8> ; I8 The address of this instruction is saved

; in the RPC field of the MSTF register.
; Upon return this value is loaded into MPC
; and fetching continues from this point.

<Instruction 9> ; I9
<Instruction 10> ; I10
....
....
_func:
<Destination 1> ; d1 Can be any instruction
<Destination 2> ; d2
<Destination 3> ; d3
<Destination 4> ; d4 Last instruction that can affect flags for

; the MRCNDD operation
<Destination 5> ; d5 Cannot be stop, branch, call or return
<Destination 6> ; d6 Cannot be stop, branch, call or return
<Destination 7> ; d7 Cannot be stop, branch, call or return

MRCNDD, NEQ ; Return to <Instruction 8> if not equal to zero
; Three instructions after MRCNDD are always
; executed whether the return is taken or not

<Destination 8> ; d8 Cannot be stop, branch, call or return
<Destination 9> ; d9 Cannot be stop, branch, call or return
<Destination 10> ; d10 Cannot be stop, branch, call or return
<Destination 11> ; d11
<Destination 12> ; d12
....
....
MSTOP
....

• d4
– d4 is the last instruction that can effect the CNDF flags for the MRCNDD

instruction. The CNDF flags are tested in the D2 phase of the pipeline. That is, a
decision is made whether to return or not when MRCNDD is in the D2 phase.

– There are no restrictions on the type of instruction for d4.
• d5, d6 and d7

– The three instructions proceeding MRCNDD can change MSTF flags but will have
no effect on whether the MRCNDD instruction makes the return or not. This is
because the flag modification will occur after the D2 phase of the MRCNDD
instruction.

– These instructions must not be the following: MSTOP, MDEBUGSTOP,
MBCNDD, MCCNDD or MRCNDD.

131SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

• d8, d9 and d10
– The three instructions following MRCNDD are always executed irrespective of

whether the return is taken or not.
– These instructions must not be the following: MSTOP, MDEBUGSTOP,

MBCNDD, MCCNDD or MRCNDD.

Table 31. Pipeline Activity For MRCNDD, Return Not Taken

Instruction F1 F2 D1 D2 R1 R2 E W

d4 d4 d3 d2 d1 I7 I6 I5

d5 d5 d4 d3 d2 d1 I7 I6

d6 d6 d5 d4 d3 d2 d1 i7

d7 d7 d6 d5 d4 d3 d2 d1

MRCNDD MRCNDD d7 d6 d5 d4 d3 d2

d8 d8 MRCNDD d7 d6 d5 d4 d3

d9 d9 d8 MRCNDD d7 d6 d5 d4

d10 d10 d9 d8 MRCNDD d7 d6 d5

d11 d11 d10 d9 d8 - d7 d6

d12 d12 d11 d10 d9 d8 - d7

etc.... d12 d11 d10 d9 d8 -

.... d12 d11 d10 d9 d8

.... d12 d11 d10 d9

d12 d11 d10

d12 d11

d12

Table 32. Pipeline Activity For MRCNDD, Return Taken

Instruction F1 F2 D1 D2 R1 R2 E W

d4 d4 d3 d2 d1 I7 I6 I5

d5 d5 d4 d3 d2 d1 I7 I6

d6 d6 d5 d4 d3 d2 d1 i7

d7 d7 d6 d5 d4 d3 d2 d1

MRCNDD MRCNDD d7 d6 d5 d4 d3 d2

d8 d8 MRCNDD d7 d6 d5 d4 d3

d9 d9 d8 MRCNDD d7 d6 d5 d4

d10 d10 d9 d8 MRCNDD d7 d6 d5

I8 I8 d10 d9 d8 - d7 d6

I9 I9 I8 d10 d9 d8 - d7

I10 I10 I9 I8 d10 d9 d8 -

etc.... I10 I9 I8 d10 d9 d8

.... I10 I9 I8 d10 d9

.... I10 I9 I8 d10

I10 I9 I8

I10 I9

I10

Example ;

See also MBCNDD #16BitDest, CNDF
MCCNDD 16BitDest, CNDF
MMOV32 mem32, MSTF
MMOV32 MSTF, mem32

132 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MSETFLG FLAG, VALUE Set or clear selected floating-point status flags

Operands
FLAG 8 bit mask indicating which floating-point status flags to change.

VALUE 8 bit mask indicating the flag value; 0 or 1.

Opcode LSW: FFFF FFFF VVVV VVVV
MSW: 0111 1001 1100 0000

Description The MSETFLG instruction is used to set or clear selected floating-point status flags in
the MSTF register. The FLAG field is an 11-bit value that indicates which flags will be
changed. That is, if a FLAG bit is set to 1 it indicates that flag will be changed; all other
flags will not be modified. The bit mapping of the FLAG field is shown below:

reserved RNDF32 TF reserved reserved ZF NF LUF LVF

8 7 6 5 4 3 2 1 0

The VALUE field indicates the value the flag should be set to; 0 or 1.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified Yes Yes Yes Yes Yes

Any flag can be modified by this instruction. The MEALLOW and RPC fields cannot be
modified with this instruction.

Pipeline This is a single-cycle instruction.

Example To make it easier and legible, the assembler accepts a FLAG=VALUE syntax for the
MSTFLG operation as shown below:
MSETFLG RNDF32=0, TF=0, NF=1; FLAG = 11000100; VALUE = 00XXX1XX;

See also MMOV32 mem32, MSTF
MMOV32 MSTF, mem32

133SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MSTOP Stop Task

Operands
none This instruction does not have any operands

Opcode LSW: 0000 0000 0000 0000
MSW: 0111 1111 1000 0000

Description The MSTOP instruction must be placed to indicate the end of each task. In addition,
placing MSTOP in unused memory locations within the CLA program RAM can be useful
for debugging and preventing run away CLA code. When MSTOP enters the D2 phase
of the pipeline, the MIRUN flag for the task is cleared and the associated interrupt is
flagged in the PIE vector table.

There are three special cases that can occur when single-stepping a task such that the
MPC reaches the MSTOP instruction.

1. If you are single-stepping or halted in "task A" and "task B" comes in before the MPC
reaches the MSTOP, then "task B" will start if you continue to step through the
MSTOP instruction. Basically if "task B" is pending before the MPC reaches MSTOP
in "task A" then there is no issue in "task B" starting and no special action is required.

2. In this case you have single-stepped or halted in "task A" and the MPC has reached
the MSTOP with no tasks pending. If "task B" comes in at this point, it will be flagged
in the MIFR register but it may or may not start if you continue to single-step through
the MSTOP instruction of "task A". It depends on exactly when the new task comes
in. To reliably start "task B" perform a soft reset and reconfigure the MIER bits. Once
this is done, you can start single-stepping "task B".

3. Case 2 can be handled slightly differently if there is control over when "task B" comes
in (for example using the IACK instruction to start the task). In this case you have
single-stepped or halted in "task A" and the MPC has reached the MSTOP with no
tasks pending. Before forcing "task B", run free to force the CLA out of the debug
state. Once this is done you can force "task B" and continue debugging.

Restrictions The MSTOP instruction cannot be placed 3 instructions before or after a MBCNDD,
MCCNDD or MRCNDD instruction.

Flags This instruction does not modify flags in the MSTF register.
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction. Table 33 shows the pipeline behavior of the MSTOP
instruction. The MSTOP instruction cannot be placed with 3 instructions of a MBCNDD,
MCCNDD or MRCNDD instruction.

134 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

Table 33. Pipeline Activity For MSTOP

Instruction F1 F2 D1 D2 R1 R2 E W

I1 I1

I2 I2 I1

I3 I3 I2 I1

MSTOP MSTOP I3 I2 I1

I4 I4 MSTOP I3 I2 I1

I5 I5 I4 MSTOP I3 I2 I1

I6 I6 I5 I4 MSTOP I3 I2 I1

New Task Arbitrated and - - - - - I3 I2Piroitized

New Task Arbitrated and - - - - - - I3Piroitized

I1 I1 - - - - - -

I2 I2 I1 - - - - -

I3 I3 I2 I1 - - - -

I4 I4 I3 I2 I1 - - -

I5 I5 I4 I3 I2 I1 - -

I6 I6 I5 I4 I3 I2 I1 -

I7 I7 I6 I5 I4 I3 I2 I1

etc

Example ; Given A = (int32)1
; B = (int32)2
; C = (int32)-7
;
; Calculate Y2 = A - B - C
_Cla1Task3:

MMOV32 MR0, @_A ; MR0 = 1 (0x00000001)
MMOV32 MR1, @_B ; MR1 = 2 (0x00000002)
MMOV32 MR2, @_C ; MR2 = -7 (0xFFFFFFF9)
MSUB32 MR3, MR0, MR1 ; A + B
MSUB32 MR3, MR3, MR2 ; A + B + C = 6 (0x0000006)
MMOV32 @_y2, MR3 ; Store y2
MSTOP ; End of task

See also MDEBUGSTOP

135SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MSUB32 MRa, MRb, MRc 32-bit Integer Subtraction

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point destination register (MR0 to MR3)

MRc CLA floating-point destination register (MR0 to MR3)

Opcode LSW: 0000 0000 00cc bbaa
MSW: 0111 1100 1110 0000

Description 32-bit integer addition of MRb and MRc.
MARa(31:0) = MARb(31:0) - MRc(31:0);

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

The MSTF register flags are modified as follows:
NF = MRa(31);
ZF = 0;
if(MRa(31:0) == 0) { ZF = 1; }

Pipeline This is a single-cycle instruction.

Example ; Given A = (int32)1
; B = (int32)2
; C = (int32)-7
;
;
Calculate Y2 = A - B - C
;
_Cla1Task3:

MMOV32 MR0, @_A ; MR0 = 1 (0x00000001)
MMOV32 MR1, @_B ; MR1 = 2 (0x00000002)
MMOV32 MR2, @_C ; MR2 = -7 (0xFFFFFFF9)
MSUB32 MR3, MR0, MR1 ; A + B
MSUB32 MR3, MR3, MR2 ; A + B + C = 6 (0x0000006)
MMOV32 @_y2, MR3 ; Store y2
MSTOP ; End of task

See also MADD32 MRa, MRb, MRc
MAND32 MRa, MRb, MRc
MASR32 MRa, #SHIFT
MLSL32 MRa, #SHIFT
MLSR32 MRa, #SHIFT
MOR32 MRa, MRb, MRc
MXOR32 MRa, MRb, MRc

136 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MSUBF32 MRa, MRb, MRc 32-bit Floating-Point Subtraction

Operands
MRa CLA floating-point destination register (MR0 to R1)

MRb CLA floating-point source register (MR0 to R1)

MRc CLA floating-point source register (MR0 to R1)

Opcode LSW: 0000 0000 00cc bbaa
MSW: 0111 1100 0100 0000

Description Subtract the contents of two floating-point registers
MRa = MRb - MRc;

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MSUBF32 generates an underflow condition.
• LVF = 1 if MSUBF32 generates an overflow condition.

Pipeline This is a single-cycle instruction.

Example
; Given A, B and C are 32-bit floating-point numbers
; Calculate Y2 = A + B - C
;
_Cla1Task5:

MMOV32 MR0, @_A ; Load MR0 with A
MMOV32 MR1, @_B ; Load MR1 with B
MADDF32 MR0, MR1, MR0 ; Add A + B

|| MMOV32 MR1, @_C ; and in parallel load C
MSUBF32 MR0, MR0, MR1 ; Subtract C from (A + B)
MMOV32 @Y, MR0 ; (A+B) - C
MSTOP ; end of task

See also MSUBF32 MRa, #16FHi, MRb
MSUBF32 MRd, MRe, MRf || MMOV32 MRa, mem32
MSUBF32 MRd, MRe, MRf || MMOV32 mem32, MRa
MMPYF32 MRa, MRb, MRc || MSUBF32 MRd, MRe, MRf

137SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MSUBF32 MRa, #16FHi, MRb 32-bit Floating Point Subtraction

Operands
MRa CLA floating-point destination register (MR0 to R1)

#16FHi A 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0.

MRb CLA floating-point source register (MR0 to R1)

Opcode LSW: IIII IIII IIII IIII
MSW: 0111 1000 0000 baaa

Description Subtract MRb from the floating-point value represented by the immediate operand. Store
the result of the addition in MRa.

#16FHi is a 16-bit immediate value that represents the upper 16-bits of an IEEE 32-bit
floating-point value. The low 16-bits of the mantissa are assumed to be all 0. #16FHi is
most useful for representing constants where the lowest 16-bits of the mantissa are 0.
Some examples are 2.0 (0x40000000), 4.0 (0x40800000), 0.5 (0x3F000000), and -1.5
(0xBFC00000). The assembler will accept either a hex or float as the immediate value.
That is, the value -1.5 can be represented as #-1.5 or #0xBFC0.
MRa = #16FHi:0 - MRb;

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MSUBF32 generates an underflow condition.
• LVF = 1 if MSUBF32 generates an overflow condition.

Pipeline This is a single-cycle instruction.

Example ; Y = sqrt(X)
; Ye = Estimate(1/sqrt(X));
; Ye = Ye*(1.5 - Ye*Ye*X*0.5)
; Ye = Ye*(1.5 - Ye*Ye*X*0.5)
; Y = X*Ye
;
_Cla1Task3:

MMOV32 MR0, @_x ; MR0 = X
MEISQRTF32 MR1, MR0 ; MR1 = Ye = Estimate(1/sqrt(X))
MMOV32 MR1, @_x, EQ ; if(X == 0.0) Ye = 0.0
MMPYF32 MR3, MR0, #0.5 ; MR3 = X*0.5
MMPYF32 MR2, MR1, MR3 ; MR2 = Ye*X*0.5
MMPYF32 MR2, MR1, MR2 ; MR2 = Ye*Ye*X*0.5
MSUBF32 MR2, #1.5, MR2 ; MR2 = 1.5 - Ye*Ye*X*0.5
MMPYF32 MR1, MR1, MR2 ; MR1 = Ye = Ye*(1.5 - Ye*Ye*X*0.5)
MMPYF32 MR2, MR1, MR3 ; MR2 = Ye*X*0.5
MMPYF32 MR2, MR1, MR2 ; MR2 = Ye*Ye*X*0.5
MSUBF32 MR2, #1.5, MR2 ; MR2 = 1.5 - Ye*Ye*X*0.5
MMPYF32 MR1, MR1, MR2 ; MR1 = Ye = Ye*(1.5 - Ye*Ye*X*0.5)
MMPYF32 MR0, MR1, MR0 ; MR0 = Y = Ye*X
MMOV32 @_y, MR0 ; Store Y = sqrt(X)
MSTOP ; end of task

See also MSUBF32 MRa, MRb, MRc
MSUBF32 MRd, MRe, MRf || MMOV32 MRa, mem32
MSUBF32 MRd, MRe, MRf || MMOV32 mem32, MRa
MMPYF32 MRa, MRb, MRc || MSUBF32 MRd, MRe, MRf

138 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MSUBF32 MRd, MRe, MRf ||MMOV32 MRa, mem32 32-bit Floating-Point Subtraction with Parallel
Move

Operands
MRd CLA floating-point destination register (MR0 to MR3) for the MSUBF32 operation

MRd cannot be the same register as MRa

MRe CLA floating-point source register (MR0 to MR3) for the MSUBF32 operation

MRf CLA floating-point source register (MR0 to MR3) for the MSUBF32 operation

MRa CLA floating-point destination register (MR0 to MR3) for the MMOV32 operation
MRa cannot be the same register as MRd

mem32 32-bit memory location accessed using direct or indirect addressing. Source for the
MMOV32 operation.

Opcode LSW: mmmm mmmm mmmm mmmm
MSW: 0010 ffee ddaa addr

Description Subtract the contents of two floating-point registers and move from memory to a
floating-point register.
MRd = MRe - MRf;
MRa = [mem32];

Restrictions The destination register for the MSUBF32 and the MMOV32 must be unique. That is,
MRa cannot be the same register as MRd.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MSUBF32 generates an underflow condition.
• LVF = 1 if MSUBF32 generates an overflow condition.

The MMOV32 Instruction will set the NF and ZF flags as follows:

Pipeline Both MSUBF32 and MMOV32 complete in a single cycle.

139SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

Example NF = MRa(31);
ZF = 0;
if(MRa(30:23) == 0) { ZF = 1; NF = 0; }

See also MSUBF32 MRa, MRb, MRc
MSUBF32 MRa, #16FHi, MRb
MMPYF32 MRa, MRb, MRc || MSUBF32 MRd, MRe, MRf

140 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MSUBF32 MRd, MRe, MRf ||MMOV32 mem32, MRa 32-bit Floating-Point Subtraction with Parallel
Move

Operands
MRd CLA floating-point destination register (MR0 to MR3) for the MSUBF32 operation

MRe CLA floating-point source register (MR0 to MR3) for the MSUBF32 operation

MRf CLA floating-point source register (MR0 to MR3) for the MSUBF32 operation

mem32 32-bit destination memory location for the MMOV32 operation

MRa CLA floating-point source register (MR0 to MR3) for the MMOV32 operation

Opcode LSW: mmmm mmmm mmmm mmmm
MSW: 0110 ffee ddaa addr

Description Subtract the contents of two floating-point registers and move from a floating-point
register to memory.
MRd = MRe - MRf;
[mem32] = MRa;

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No Yes Yes

The MSTF register flags are modified as follows:

• LUF = 1 if MSUBF32 generates an underflow condition.
• LVF = 1 if MSUBF32 generates an overflow condition.

Pipeline Both MSUBF32 and MMOV32 complete in a single cycle.

Example

See also MSUBF32 MRa, MRb, MRc
MSUBF32 MRa, #16FHi, MRb
MSUBF32 MRd, MRe, MRf || MMOV32 MRa, mem32
MMPYF32 MRa, MRb, MRc || MSUBF32 MRd, MRe, MRf

141SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MSWAPF MRa, MRb {, CNDF} Conditional Swap

Operands
MRa CLA floating-point register (MR0 to MR3)

MRb CLA floating-point register (MR0 to MR3)

CNDF Optional condition tested based on the MSTF flags

Opcode LSW: 0000 0000 CNDF bbaa
MSW: 0111 1011 0000 0000

Description Conditional swap of MRa and MRb.
if (CNDF == true) swap MRa and MRb;

CNDF is one of the following conditions:
Encode (1) CNDF Description MSTF Flags Tested

0000 NEQ Not equal to zero ZF == 0

0001 EQ Equal to zero ZF == 1

0010 GT Greater than zero ZF == 0 AND NF == 0

0011 GEQ Greater than or equal to zero NF == 0

0100 LT Less than zero NF == 1

0101 LEQ Less than or equal to zero ZF == 1 OR NF == 1

1010 TF Test flag set TF == 1

1011 NTF Test flag not set TF == 0

1100 LU Latched underflow LUF == 1

1101 LV Latched overflow LVF == 1

1110 UNC Unconditional None

1111 UNCF (2) Unconditional with flag None
modification

(1) Values not shown are reserved.
(2) This is the default operation if no CNDF field is specified. This condition will allow the ZF and NF flags to

be modified when a conditional operation is executed. All other conditions will not modify these flags.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No No No No No

No flags affected

Pipeline This is a single-cycle instruction.

142 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

Example ; X is an array of 32-bit floating-point values
; and has len elements. Find the maximum value in
; the array and store it in Result
;
; Note: MCMPF32 and MSWAPF can be replaced by MMAXF32
;
_Cla1Task1:

MMOVI16 MAR1,#_X ; Start address
MUI16TOF32 MR0, @_len ; Length of the array
MNOP ; delay for MAR1 load
MNOP ; delay for MAR1 load
MMOV32 MR1, *MAR1[2]++ ; MR1 = X0

LOOP
MMOV32 MR2, *MAR1[2]++ ; MR2 = next element
MCMPF32 MR2, MR1 ; Compare MR2 with MR1
MSWAPF MR1, MR2, GT ; MR1 = MAX(MR1, MR2)
MADDF32 MR0, MR0, #-1.0 ; Decrememt the counter
MCMPF32 MR0 #0.0 ; Set/clear flags for MBCNDD
MNOP
MNOP
MNOP
MBCNDD LOOP, NEQ ; Branch if not equal to zero
MMOV32 @_Result, MR1 ; Always executed
MNOP ; Always executed
MNOP ; Always executed
MSTOP ; End of task

See also

143SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MTESTTF CNDF Test MSTF Register Flag Condition

Operands
CNDF condition to test based on MSTF flags

Opcode LSW: 0000 0000 0000 cndf
MSW: 0111 1111 0100 0000

Description Test the CLA floating-point condition and if true, set the MSTF[TF] flag. If the condition is
false, clear the MSTF[TF] flag. This is useful for temporarily storing a condition for later
use.
if (CNDF == true) TF = 1;
else TF = 0;

CNDF is one of the following conditions:
Encode (3) CNDF Description MSTF Flags Tested

0000 NEQ Not equal to zero ZF == 0

0001 EQ Equal to zero ZF == 1

0010 GT Greater than zero ZF == 0 AND NF == 0

0011 GEQ Greater than or equal to zero NF == 0

0100 LT Less than zero NF == 1

0101 LEQ Less than or equal to zero ZF == 1 OR NF == 1

1010 TF Test flag set TF == 1

1011 NTF Test flag not set TF == 0

1100 LU Latched underflow LUF == 1

1101 LV Latched overflow LVF == 1

1110 UNC Unconditional None

1111 UNCF (4) Unconditional with flag None
modification

(3) Values not shown are reserved.
(4) This is the default operation if no CNDF field is specified. This condition will allow the ZF and NF flags to

be modified when a conditional operation is executed. All other conditions will not modify these flags.

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified Yes No No No No

TF = 0;
if (CNDF == true) TF = 1;

Note: If (CNDF == UNC or UNCF), the TF flag will be set to 1.

Pipeline This is a single-cycle instruction.

144 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

Example ; if (State == 0.1)
; RampState = RampState || RAMPMASK
; else if (State == 0.01)
; CoastState = CoastState || COASTMASK
; else
; SteadyState = SteadyState || STEADYMASK
;
_Cla1Task2:

MMOV32 MR0, @_State
MCMPF32 MR0, #0.1 ; Affects flags for 1st MBCNDD (A)
MCMPF32 MR0, #0.01 ; Check used by 2nd MBCNDD (B)
MTESTTF EQ ; Store EQ flag in TF for 2nd MBCNDD (B)
MNOP
MBCNDD _Skip1, NEQ ; (A) If State != 0.1, go to Skip1
MMOV32 MR1, @_RampState ; Always executed
MMOVXI MR2, #RAMPMASK ; Always executed
MOR32 MR1, MR2 ; Always executed
MMOV32 @_RampState, MR1 ; Execute if (A) branch not taken
MSTOP ; end of task if (A) branch not taken

_Skip1:
MMOV32 MR3, @_SteadyState
MMOVXI MR2, #STEADYMASK
MOR32 MR3, MR2
MBCNDD _Skip2, NTF ; (B) if State != .01, go to Skip2
MMOV32 MR1, @_CoastState ; Always executed
MMOVXI MR2, #COASTMASK ; Always executed
MOR32 MR1, MR2 ; Always executed
MMOV32 @_CoastState, MR1 ; Execute if (B) branch not taken
MSTOP ; end of task if (B) branch not taken

_Skip2:
MMOV32 @_SteadyState, MR3 ; Executed if (B) branch taken
MSTOP

See also

145SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MUI16TOF32 MRa, mem16 Convert unsigned 16-bit integer to 32-bit floating-point value

Operands
MRa CLA floating-point destination register (MR0 to MR3)

mem16 16-bit source memory location

Opcode LSW: mmmm mmmm mmmm mmmm

MSW: 0111 0101 01aa addr

Description When converting F32 to I16/UI16 data format, the MF32TOI16/UI16 operation truncates
to zero while the MF32TOI16R/UI16R operation will round to nearest (even) value.
MRa = UI16TOF32[mem16];

Flags This instruction does not affect any flags:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example

See also MF32TOI16 MRa, MRb
MF32TOI16R MRa, MRb
MF32TOUI16 MRa, MRb
MF32TOUI16R MRa, MRb
MI16TOF32 MRa, MRb
MI16TOF32 MRa, mem16
MUI16TOF32 MRa, MRb

146 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MUI16TOF32 MRa, MRb Convert unsigned 16-bit integer to 32-bit floating-point value

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 0000 bbaa

MSW: 0111 1110 1110 0000

Description Convert an unsigned 16-bit integer to a 32-bit floating-point value. When converting
float32 to I16/UI16 data format, the MF32TOI16/UI16 operation truncates to zero while
the MF32TOI16R/UI16R operation will round to nearest (even) value.
MRa = UI16TOF32[MRb];

Flags This instruction does not affect any flags:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example MMOVXI MR1, #0x800F ; MR1(15:0) = 32783 (0x800F)
MUI16TOF32 MR0, MR1 ; MR0 = UI16TOF32 (MR1(15:0))

; = 32783.0 (0x47000F00)

See also MF32TOI16 MRa, MRb
MF32TOI16R MRa, MRb
MF32TOUI16 MRa, MRb
MF32TOUI16R MRa, MRb
MI16TOF32 MRa, MRb
MI16TOF32 MRa, mem16
MUI16TOF32 MRa, mem16

147SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MUI32TOF32 MRa, mem32 Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

Operands
MRa CLA floating-point destination register (MR0 to MR3)

mem32 32-bit memory location accessed using direct or indirect addressing

Opcode LSW: mmmm mmmm mmmm mmmm

MSW: 0111 0100 10aa addr

Description MRa = UI32TOF32[mem32];

Flags This instruction does not affect any flags:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example ; Given x2, m2 and b2 are Uint32 numbers:
;
; x2 = Uint32(2) = 0x00000002
; m2 = Uint32(1) = 0x00000001
; b2 = Uint32(3) = 0x00000003
;
; Calculate y2 = x2 * m2 + b2
;
_Cla1Task1:

MUI32TOF32 MR0, @_m2 ; MR0 = 1.0 (0x3F800000)
MUI32TOF32 MR1, @_x2 ; MR1 = 2.0 (0x40000000)
MUI32TOF32 MR2, @_b2 ; MR2 = 3.0 (0x40400000)
MMPYF32 MR3, MR0, MR1 ; M*X
MADDF32 MR3, MR2, MR3 ; Y=MX+B = 5.0 (0x40A00000)
MF32TOUI32 MR3, MR3 ; Y = Uint32(5.0) = 0x00000005
MMOV32 @_y2, MR3 ; store result
MSTOP ; end of task

See also MF32TOI32 MRa, MRb
MF32TOUI32 MRa, MRb
MI32TOF32 MRa, mem32
MI32TOF32 MRa, MRb
MUI32TOF32 MRa, MRb

148 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com Instruction Set

MUI32TOF32 MRa, MRb Convert Unsigned 32-bit Integer to 32-bit Floating-Point Value

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 0000 bbaa

MSW: 0111 1101 1100 0000

Description MRa = UI32TOF32 [MRb];

Flags This instruction does not affect any flags:
Flag TF ZF NF LUF LVF

Modified No No No No No

Pipeline This is a single-cycle instruction.

Example MMOVIZ MR3, #0x8000 ; MR3(31:16) = 0x8000
MMOVXI MR3, #0x1111 ; MR3(15:0) = 0x1111

; MR3 = 2147488017
MUI32TOF32 MR3, MR3 ; MR3 = MUI32TOF32 (MR3) = 2147488017.0 (0x4F000011)

See also MF32TOI32 MRa, MRb
MF32TOUI32 MRa, MRb
MI32TOF32 MRa, mem32
MI32TOF32 MRa, MRb
MUI32TOF32 MRa, mem32

149SPRUGE6B–May 2009–Revised May 2010 TMS320x2803x Piccolo Control Law Accelerator (CLA)

Copyright © 2009–2010, Texas Instruments Incorporated

Instruction Set www.ti.com

MXOR32 MRa, MRb, MRc Bitwise Exclusive Or

Operands
MRa CLA floating-point destination register (MR0 to MR3)

MRb CLA floating-point source register (MR0 to MR3)

MRc CLA floating-point source register (MR0 to MR3)

Opcode LSW: 0000 0000 00cc bbaa
MSW: 0111 1100 1010 0000

Description Bitwise XOR of MRb with MRc.
MARa(31:0) = MARb(31:0) XOR MRc(31:0);

Flags This instruction modifies the following flags in the MSTF register:
Flag TF ZF NF LUF LVF

Modified No Yes Yes No No

The MSTF register flags are modified based on the integer results of the operation.
NF = MRa(31);
ZF = 0;
if(MRa(31:0) == 0) { ZF = 1; }

Pipeline This is a single-cycle instruction.

Example MMOVIZ MR0, #0x5555 ; MR0 = 0x5555AAAA
MMOVXI MR0, #0xAAAA

MMOVIZ MR1, #0x5432 ; MR1 = 0x5432FEDC
MMOVXI MR1, #0xFEDC

; 0101 XOR 0101 = 0000 (0)
; 0101 XOR 0100 = 0001 (1)
; 0101 XOR 0011 = 0110 (6)
; 0101 XOR 0010 = 0111 (7)
; 1010 XOR 1111 = 0101 (5)
; 1010 XOR 1110 = 0100 (4)
; 1010 XOR 1101 = 0111 (7)
; 1010 XOR 1100 = 0110 (6)

MXOR32 MR2, MR1, MR0 ; MR3 = 0x01675476

See also MAND32 MRa, MRb, MRc
MOR32 MRa, MRb, MRc

150 TMS320x2803x Piccolo Control Law Accelerator (CLA) SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com

Appendix A CLA and CPU Arbitration

Typically, CLA activity is independent of the CPU activity. Under the circumstance where both the CLA
and the CPU are attempting to access memory or a peripheral register within the same interface
concurrently, an arbitration procedure will occur. This appendix describes this arbitration.

A.1 CLA and CPU Arbitration

Typically, CLA activity is independent of the CPU activity. Under the circumstance where both the CLA
and the CPU are attempting to access memory or a peripheral register within the same interface
concurrently, an arbitration procedure will occur. The one exception is the ADC result registers which do
not create a conflict when read by both the CPU and the CLA simultaneously even if different addresses
are accessed. Any combined accesses between the different interfaces, or where the CPU access is
outside of the interface that the CLA is accessing do not create a conflict.

The interfaces that can have conflict arbitration are:
• CLA Message RAMs
• CLA Program Memory
• CLA Data RAMs

A.1.1 CLA Message RAMs

Message RAMs consist of two blocks. These blocks are for passing data between the main CPU and the
CLA. No opcode fetches are allowed from the message RAMs. The two message RAMs have the
following characteristics:

• CLA to CPU Message RAM:
The following accesses are allowed:

– CPU reads
– CLA reads and writes
– CPU debug reads and writes
The following accesses are ignored

– CPU writes
Priority of accesses are (highest priority first):

1. CLA write
2. CPU debug write
3. CPU data read, program read, CPU debug read
4. CLA data read

• CPU to CLA Message RAM:
The following accesses are allowed:

– CPU reads and writes
– CLA reads
– CPU debug reads and writes
The following accesses are ignored

– CLA writes
Priority of accesses are (highest priority first):

1. CLA read
2. CPU data write, program write, CPU debug write
3. CPU data read, CPU debug read
4. CPU program read

151SPRUGE6B–May 2009–Revised May 2010 CLA and CPU Arbitration

Copyright © 2009–2010, Texas Instruments Incorporated

CLA and CPU Arbitration www.ti.com

A.1.2 CLA Program Memory

The behavior of the program memory depends on the state of the MMEMCFG[PROGE] bit. This bit
controls whether the memory is mapped to CLA space or CPU space.

• MMEMCFG[PROGE] == 0
In this case the memory is mapped to the CPU. The CLA will be halted and no tasks shoud be
incoming.

– Any CLA fetch will be treated as an illegal opcode condition as described in Section 3.4. This
condition will not occur if the proper procedure is followed to map the program memory.

– CLA reads and writes cannot occur
– The memory block behaves as any normal SRAM block mapped to CPU memory space.
Priroty of accesses are (highest priority first):

1. CPU data write, program write, debug write
2. CPU data read, program read, debug read
3. CPU fetch, program read

• MMEMCFG[PROGE] == 1
In this case the memory block is mapped to CLA space. The CPU can only make debug accesses.

– CLA reads and writes cannot occur
– CLA fetches are allowed
– CPU fetches return 0 which is an illegal opcode and will cause an ITRAP interrupt.
– CPU data reads and program reads return 0
– CPU data writes and program writes are ignored
Priroty of accesses are (highest priority first):

1. CLA fetch
2. CPU debug write
3. CPU debug read

NOTE: Because the CLA fetch has higher priority than CPU debug reads, it is possible for the CLA
to permanently block debug accesses if the CLA is executing in a loop. This might occur
when initially developing CLA code due to a bug. To avoid this issue, the program memory
will return all 0x0000 for CPU debug reads (ignore writes) when the CLA is running. When
the CLA is halted or idle then normal CPU debug read and write access can be performed.

152 CLA and CPU Arbitration SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com CLA and CPU Arbitration

A.1.3 CLA Data Memory

There are two independent data memory blocks. The behavior of the data memory depends on the
state of the MMEMCFG[RAM0E] and MMEMCFG[RAM1E] bits. These bits determine whether the
memory blocks are mapped to CLA space or CPU space.

• MMEMCFG[RAMxE] == 0
In this case the memory block is mapped to the CPU.

– CLA fetches cannot occur to this block.
– CLA reads return 0
– CLA writes are ignored
– The memory block behaves as any normal SARAM block mapped to the CPU memory space.
Priroty of accesses are (highest priority first):

1. CPU data write, program write, debug write
2. CPU data read, program read, debug read
3. CPU fetch, program read

• MMEMCFG[RAMxE] == 1
In this case th ememory block is mapped to CLA space. The CPU can only make debug accesses.

– CLA fetches cannot occur to this block.
– CLA read and CLA writes are allowed.
– CPU fetches return 0
– CPU data reads and program reads return 0
– CPU data writes and program writes are ignored
Priroty of accesses are (highest priority first):

1. CLA write
2. CPU debug write
3. CPU debug read
4. CLA read

A.1.4 Peripheral Registers (ePWM, HRPWM, Comparator)

Accesses to the registers follow these rules:
• If both the CPU and CLA request access at the same time, then the CLA will have priority and the

main CPU is stalled.
• If a CPU access is in progress and another CPU access is pending, then the CLA will have priority

over the pending CPU access. In this case the CLA access will begin when the current CPU access
completes.

• While a CPU access is in progress any incoming CLA access will be stalled.
• While a CLA access is in progress any incoming CPU access will be stalled.
• A CPU write operation has priority over a CPU read operation.
• A CLA write operation has priority over a CLA read operation.
• If the CPU is performing a read-modify-write operation and the CLA performs a write to the same

location, the CLA write may be lost if the operation occurs in-between the CPU read and write. For this
reason, you should not mix CPU and CLA accesses to same location.

153SPRUGE6B–May 2009–Revised May 2010 CLA and CPU Arbitration

Copyright © 2009–2010, Texas Instruments Incorporated

www.ti.com

Appendix B Revision History

This document has been revised because of the following technical change(s).

Table 34. Revisions to this Document

Location Edits, Deletes, Additions

Section 4.3.3 For bits 15-12, value 0010, changed ePWM5 to ePWM4 is the input for interrupt task 4. (EPWM4_INT)
for bit 15-12 description.

154 Revision History SPRUGE6B–May 2009–Revised May 2010

Copyright © 2009–2010, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DLP® Products www.dlp.com Communications and www.ti.com/communications
Telecom

DSP dsp.ti.com Computers and www.ti.com/computers
Peripherals

Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps

Interface interface.ti.com Energy www.ti.com/energy

Logic logic.ti.com Industrial www.ti.com/industrial

Power Mgmt power.ti.com Medical www.ti.com/medical

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense
Defense

RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video

Wireless www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/communications
http://dsp.ti.com
http://www.ti.com/computers
http://www.ti.com/clocks
http://www.ti.com/consumer-apps
http://interface.ti.com
http://www.ti.com/energy
http://logic.ti.com
http://www.ti.com/industrial
http://power.ti.com
http://www.ti.com/medical
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/space-avionics-defense
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless-apps

	TMS320x2803x Piccolo Control Law Accelerator (CLA)
	Table of Contents
	Preface
	1 Control Law Accelerator (CLA) Overview
	2 CLA Interface
	2.1 CLA Memory
	2.2 CLA Memory Bus
	2.3 Shared Peripherals and EALLOW Protection
	2.4 CLA Tasks and Interrupt Vectors

	3 CLA Configuration and Debug
	3.1 Building a CLA Application
	3.2 Typical CLA Initialization Sequence
	3.3 Debugging CLA Code
	3.4 CLA Illegal Opcode Behavior
	3.5 Resetting the CLA

	4 Register Set
	4.1 Register Memory Mapping
	4.2 Task Interrupt Vector Registers
	4.2.1 Task Interrupt Vector (MVECT1/2/3/4/5/6/7/8) Register

	4.3 Configuration Registers
	4.3.1  Control Register (MCTL)
	4.3.2 Memory Configuration Register (MMEMCFG)
	4.3.3  CLA Peripheral Interrupt Source Select 1 Register (MPISRCSEL1)
	4.3.4 Interrupt Enable Register (MIER)
	4.3.5  Interrupt Flag Register (MIFR)
	4.3.6  Interrupt Overflow Flag Register (MIOVF)
	4.3.7  Interrupt Run Status Register (MIRUN)
	4.3.8  Interrupt Force Register (MIFRC)
	4.3.9  Interrupt Flag Clear Register (MICLR)
	4.3.10 Interrupt Overflow Flag Clear Register (MICLROVF)

	4.4 Execution Registers
	4.4.1 MPC Register
	4.4.2 MSTF Register

	5 Pipeline
	5.1 Pipeline Overview
	5.2 CLA Pipeline Alignment
	5.2.1 ADC Early Interrupt to CLA Response

	5.3 Parallel Instructions

	6 Instruction Set
	6.1 Instruction Descriptions
	6.2 Addressing Modes and Encoding
	6.3 Instructions

	Appendix A CLA and CPU Arbitration
	A.1 CLA and CPU Arbitration
	A.1.1 CLA Message RAMs
	A.1.2 CLA Program Memory
	A.1.3 CLA Data Memory
	A.1.4 Peripheral Registers (ePWM, HRPWM, Comparator)

	Appendix B Revision History

