5 W AUDIO AMPLIFIER WITH MUTING

- MUTING FACILITY
- PROTECTION AGAINST CHIP OVER TEMPERATURE

SGS-THOMSON MICROELECTRONICS

- VERY LOW NOISE
- HIGH SUPPLY VOLTAGE REJECTION
- LOW "SWITCH-ON" NOISE
- VOLTAGE RANGE 4 V TO 30 V

DESCRIPTION

The TDA1905 is a monolithic integrated circuit in POWERDIP package, intended for use as low frequency power amplifier in a wide range of applications in radio and TV sets.

The TDA1905 is assembled in a new plastic package, the POWERDIP, that offers the same assembly ease, space and cost saving of a normal dual in-line package but with a power dissipation of up to 6 W and a thermal resistance of 15 °C/W (junction to pins).

PIN CONNECTION (top view)

OUTPUT	16 GND	
V ₅ 2	15] GND	
BOOTSTRAP 3	14] GND	
THRESHOLD (13] GND	
MUTING 5	12] GND	
INVERT. IN [6	11] GND	
SVR 7	10] GND	
NON INVERT	9 GND	

APPLICATION CIRCUIT

SCHEMATIC DIAGRAM

Si

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	30	V
I _o	Output Peak Current (non repetitive)	3	A
I _o	Output Peak Current (repetitive)	2.5	Α
Vi	Input Voltage	0 to + V _s	V
Vi	Differential Input Voltage	± 7	V
V11	Muting Threshold Voltage	Vs	V
Ptot	Power Dissipation at T_{amb} = 80 °C T_{case} = 60 °C	1 6	W W
T _{stg} . T _j	Storage and Junction Temperature	- 40 to 150	°C

THERMAL DATA

R _{th I-case}	Thermal Resistance Junction-pins	Max.	15	°C/W
R _{thj-amb}	Thermal Resistance Junction-amb	Max.	70	°C/W

TEST CIRCUITS

Symbol	Parameter	Test Conditions		Тур.	Max.	Unit
Vs	Supply Voltage		4		30	V
Vo	Quiescent Output Voltage	$V_{s} = 4 V$ $V_{s} = 14 V$ $V_{s} = 30 V$	1.6 6.7 14.4	2.1 7.2 15.5	2.5 7.8 16.8	v
ld	Quiescent Drain Current	$V_{s} = 4 V$ $V_{s} = 14 V$ $V_{s} = 30 V$		15 17 21	35	mA
V _{CE sat}	Output Stage Saturation Voltage	$I_{\rm C} = 1$ A $I_{\rm C} = 2$ A		0.5		V
Po	Output Power		2.2 5 5 4.5	2.5 5.5 5.5 5.3		w
d	Harmonic Distortion			0.1 0.1 0.1 0.1		%
Vi	Input Sensitivity			37 49 73 100		mV
Vi	Input Saturation Voltage (rms)	$V_{s} = 9 V$ $V_{s} = 14 V$ $V_{s} = 18 V$ $V_{s} = 24 V$	0.8 1.3 1.8 2.4			v
Ri	Input Resistance (pin 8)	f = 1 KHz	60	100		KΩ
ld	Drain Current			380 550 410 295		mA
η	Efficiency			73 71 74 75		%

ELECTRICAL CHARACTERISTICS (refer to the test circuit, $T_{amb} = 25 \text{ °C}$, R_{th} (heatsink) = 20 °C/W, unless otherwise specified)

(*) With an external resistor of 100 Ω between pin 3 and +V_s.

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Te	st Conditio	ns	Min.	Тур.	Max.	Unit
BW	Small Signal bandwidth (- 3 dB)	$V_s = 14 V$	$V_s = 14 \text{ V}$ $R_L = 4 \Omega$ $P_o = 1 \text{ W}$			40 to 40,000		Hz
Gv	Voltage Gain (open loop)	Vs = 14 V f = 1 KHz				75		dB
Gv	Voltage Gain (closed loop)	V _s = 14 V f = 1 KHz	$R_L = 4 \Omega$ $P_o = 1 W$		39.5	40	40.5	dB
e _N	Total Input Noise		$R_g = 50 \Omega$ $R_g = 1 k\Omega$ $R_g = 10 k\Omega$	(°)		1.2 1.3 1.5	4.0	μV
		_	$R_{g} = 50 \Omega$ $R_{g} = 1 k\Omega$ $R_{g} = 10 k\Omega$	(°°)		2.0 2.0 2.2	6.0	μV
S/N	Signal to Noise Ratio	$V_{s} = 14 V$ $P_{o} = 5.5 W$	$\begin{array}{l} R_{g} = 10 k\Omega \\ R_{g} = 0 \end{array}$	(°)		90 92		dB
		$R_L = 4 \Omega$	$R_g = 10 k\Omega$ $R_g = 0$	(°°)		87 87		dB
SVR	Supply Voltage Rejection	$\begin{array}{l} V_s = 18 \ V \\ f_{ripple} = 100 \\ V_{ripple} = 0.5 \end{array}$	R _L = 8 Ω Hz V _{rms}	$R_g = 10 \ k\Omega$	40	50		dB
T _{sd}	Thermal Shut-down Case Temperature (*)		F	P _{tot} = 2.5 W		115		°C

MUTING FUNCTION

VTOFF	Muting-off Threshold Voltage (pin 4)		1.9		4.7	V
VTON	Muting-on Threshold Voltage (pin 4)		0		1.3	V
			6.2		Vs	
R ₅	Input Resistance (pin 5)	Muting-off	80	200		kΩ
		Muting-on		10	30	Ω
R ₄	Input Resistance (pin 4)		150			kΩ
AT	Muting Attenuation	$R_g + R_1 = 10 \ k\Omega$	50	60		dB

Notes: (') Weighting filter = curve A. ('') Filter with noise bandwidth : 22 Hz to 22 KHz. (') See fig. 30 and fig. 31.

Figure 1 : Quiescent Output Voltage vs. Supply Voltage.

Figure 5 : Distortion vs. Output Power ($R_L = 8 \Omega$).

Figure 2 : Quiescent Drain Current vs. Supply Voltage.

Figure 4 : Distortion vs. Output Power $(R_L = 16 \Omega)$.

Figure 6 : Distortion vs. Output Power ($R_L = 4 \Omega$)

Figure 7 : Distortion vs. Frequency ($R_L = 16 \Omega$).

Figure 9 : Distortion vs. Frequency ($R_L = 4 \Omega$).

Figure 11 : Output Power vs. Input Voltage.

Figure 8 : Distortion vs. Frequency ($R_L = 8 \Omega$).

Figure 10 : Open Loop Frequency Response.

Figure 12 : Value of Capacitor Cx vs. Bandwidth (BW) and Gain (Gv).

Figure 13 : Supply Voltage Rejection vs. Voltage Gain (ref. to the Muting circuit).

Figure 15 : Max Power Dissipation vs. Supply Voltage (sine wave operation).

Figure 17 : Power Dissipation and Efficiency vs. Output Power.

Figure 14 : Supply Voltage Rejection vs. Source Resistance.

Figure 16 : Power Dissipation and Efficiency vs. Output Power.

Figure 18 : Power Dissipation and Efficiency vs. Output Power.

APPLICATION INFORMATION

Figure 19 : Application Circuit without Muting.

Figure 20 : PC Board and Components Layout of the Circuit of Figure 19 (1 : 1 scale).

Figure 24 : Output Power vs. Supply Voltage (circuit of fig. 23).

Figure 25 : Two Position DC Tone Control Using Change of Pin 5 Resistance (muting function).

Figure 27 : Bass Bomb Tone Control Using Change of Pin 5 Resistance (muting function).

MUTING FUNCTION

The output signal can be inhibited applying a DC voltage VT to pin 4, as shown in fig.29

Figure 29.

The input resistance at pin 5 depends on the threshold voltage VT at pin 4 and is typically:

R ₅ = 200 KΩ	@	$1.9~V \leq V_T \leq 4.7~V$
$R_5 = 10 \ \Omega$	@	$0V \le V_T \le 1.3 V$

muting-off

muting-on

Referring to the following input stage, the possible attenuation of the input signal and therefore of the

output signal can be found using the following expression:

Considering R_g = 10 K Ω the attenuation in the muting-on condition is typically A_T = 60 dB. In the muting-off condition, the attenuation is very low, typically 1.2 dB.

A very low current is necessary to drive the threshold voltage V_T because the input resistance at pin 4 is greater than 150 K Ω . The muting function can be used in many cases, when a temporary inhibition of the output signal is requested, for example:

- in switch-on condition, to avoid preamplifier poweron transients (see fig.22).
- during switching at the input stages.
- during the receiver tuning.

The variable impedance capability at pin 5 can be useful in many application and two examples are shown in fig.25 and 27, where it has been used to change the feedback network, obtaining 2 different frequency response.

APPLICATION SUGGESTION

The recommended values of the external components are those shown on the application circuit of fig. 21.

When the supply voltage V_s is less than 10 V, a 100 Ω

resistor must be connected between pin 2 and pin 3 in order to obtain the maximum output power.

Different values can be used. The following table can help the designer.

Component	Component Raccom. Value Purpose Larger than Smaller than Recommended Value Recommended Value		Allowed Ra Min. Ma			
R _g + R ₁	10 ΚΩ	Input Signal Imped. for Muting Operation	Increase of the Attenuation in Muting-on Condition. Decrease of the Input Sensitivity.	Decrease of the Attenuation in Muting-on Condition.		
R ₂	10 KΩ	Feedback	Increase of Gain	Decrease of Gain	9 R3	
R ₃	100 Ω	Resistors		Increase Quiescent Current.		
			Decrease of Gain	Increase of Gain		1 ΚΩ
R ₄	1Ω	Frequency Stability	Danger of Oscillation at High Frequencies with Inductive Loads.			
R ₅	100 Ω	Increase of the Output Swing with Low Supply Voltage.			47	330
P ₁	20 ΚΩ	Volume Potentiometer	Increase of the Switch-on Noise	Decrease of the Input Impedance and of the Input Level	10 KΩ	100 KΩ
C ₁ C ₂ C ₃	0.22 μF	Input DC Decoupling.	Higher Cost Lower Noise.	Higher Low Frequency Cutoff. Higher Noise.		
C ₄	2.2 μF	Inverting Input DC Decoupling.	Increase of the Switch-on Noise.	Higher Low Frequency Cutoff.	0.1 μF	
C ₅	0.1 μF	Supply Voltage Bypass.		Danger of Oscillations.		
C ₆	10 μF	Ripple Rejection	Increase of SVR Increase of the Switch-on Time	Degradation of SVR	2.2 μF	100 μF
C7	47 μF	Bootstrap.		Increase of the Distortion at Low Frequency.	10 μF	100 μF
C ₈	0.22 μF	Frequency Stability.		Danger of Oscillation.		
C ₉	1000 μF	Output DC Decoupling.		Higher Low Frequency Cutoff.		

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily tolerated since the T_j cannot be higher than 150 °C.

 The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junc-

Figure 30 : Output Power and Drain Current vs. Case Temperature.

Figure 32 : Maximum Allowable Power Dissignation vs. Ambient Temperature.

MOUNTING INSTRUCTION : See TDA1904.

tion temperature.

If for any reason, the junction temperature increases up to 150 °C, the thermal shut-down simply reduces the power dissipation and the current consumption.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 32 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Figure 31 : Output Power and Drain Current vs. Case Temperature.

16/16

