\rightarrow 7 \blacksquare microelectronics \blacksquare T D A 1 9 0 5

5 W AUDIO AMPLIFIER WITH MUTING

- MUTING FACILITY
- PROTECTION AGAINST CHIP OVER **TEMPERATURE**

r z Sus-Indmsun

- VERY LOW NOISE
- **HIGH SUPPLY VOLTAGE REJECTION**
- LOW "SWITCH-ON" NOISE
- VOLTAGE RANGE 4 V TO 30 V

DESCRIPTION

The TDA1905 is a monolithic integrated circuit in POWERDIP package, intended for use as low frequency power amplifier in a wide range of applications in radio and TV sets.

The TDA1905 is assembled in a new plastic package, the POWERDIP, that offers the same assembly ease, space and cost saving of a normal dual in-line package but with a power dissipation of up to 6 W and a thermal resistance of 15 'CA*N* (junction to pins).

PIN CONNECTION (top view)

APPLICATION CIRCUIT

SCHEMATIC DIAGRAM

ST

ABSOLUTE MAXIMUM RATINGS

THERMAL DATA

TEST CIRCUITS

ELECTRICAL CHARACTERISTICS (refer to the test circuit, T_{amb} = 25 °C, R_{th} (heatsink) = 20 °C/W, unless otherwise specified)

(*) With an external resistor of 100 Ω between pin 3 and +V₈.

ELECTRICAL CHARACTERISTICS (continued)

MUTING FUNCTION

(')
('')
(')

Weighting filter = curve A. Fitter with noise bandwidth : 22 Hz to 22 KHz. See fig. 30 and fig. 31.

Figure 1 : Quiescent Output Voltage vs. Supply Voltage.

Figure 5 : Distortion vs. Output Power ($R_L = 8 \Omega$).

Figure 2 : Quiescent Drain Current vs. Supply Voltage.

Figure 4 : Distortion vs. Output Power $(R_L = 16 \Omega)$.

Figure 6 : Distortion vs. Output Power ($R_L = 4 \Omega$)

Figure 7 : Distortion vs. Frequency ($R_L = 16 \Omega$).

Figure 9 : Distortion vs. Frequency $(R_L = 4 \Omega)$.

Figure 11 : Output Power vs. Input Voltage.

Figure 8 : Distortion vs. Frequency ($R_L = 8 \Omega$).

Figure 10 : Open Loop Frequency Response.

Figure 12 : Value of Capacitor Cx vs. Bandwidth (BW) and Gain (Gv).

Figure 13 : Supply Voltage Rejection vs. Voltage Gain (ref. to the Muting circuit).

Figure 15 : Max Power Dissipation vs. Supply Voltage (sine wave operation).

Figure 17 : Power Dissipation and Efficiency vs. Output Power.

Figure 14 : Supply Voltage Rejection vs. Source Resistance.

Figure 16 : Power Dissipation and Efficiency vs. Output Power.

Figure 18 : Power Dissipation and Efficiency vs. Output Power.

APPLICATION INFORMATION

Figure 19 : Application Circuit without Muting.

Figure 20: PC Board and Components Layout of the Circuit of Figure 19 (1:1 scale).

Figure 24 : Output Power vs. Supply Voltage (circuit of fig. 23).

Figure 25 : Two Position DC Tone Control Using Change of Pin 5 Resistance (muting function).

Figure 27 : Bass Bomb Tone Control Using Change of Pin 5 Resistance (muting function).

MUTING FUNCTION

The output signal can be inhibited applying a DC voltage V_T to pin 4, as shown in fig.29

Figure 29.

The input resistance at pin 5 depends on the threshold voltage V_T at pin 4 and is typically:

muting-off

muting-on

Referring to the following input stage, the possible attenuation of the input signal and therefore of the output signal can be found using the following expression:

Considering $R_0 = 10 K\Omega$ the attenuation in the muting-on condition is typically $A_T = 60$ dB. In the muting-off condition, the attenuation is very low, typically 1.2 dB.

A very low current is necessary to drive the threshold voltage V_T because the input resistance at pin 4 is greater than 150 K Ω . The muting function can be used in many cases, when a temporary inhibition of the output signal is requested, for example:

- in switch-on condition, to avoid preamplifier poweron transients (see fig.22).
- during switching at the input stages.
- during the receiver tuning.

The variable impedance capability at pin 5 can be useful in many application and two examples are shown in fig.25 and 27, where it has been used to change the feedback network, obtaining 2 different frequency response.

APPLICATION SUGGESTION

The recommended values of the external components are those shown on the application circuit of fig. 21.

When the supply voltage V_s is less than 10 V, a 100 Ω

resistor must be connected between pin 2 and pin 3 in order to obtain the maximum output power.

Different values can be used. The following table can help the designer.

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

1) An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily tolerated since the T_i cannot be higher than $150 \degree C$.

2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junc-

Figure 30 : Output Power and Drain Current vs. Case Temperature.

MOUNTING INSTRUCTION : SeeTDA1904.

SGS-THOMSON
MACROELECTROMICS

tion temperature.

If for any reason, the junction temperature increases up to 150 'C, the thermal shut-down simply reduces the power dissipation and the current consumption.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 32 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Figure 31 : Output Power and Drain Current vs. Case Temperature.

