
OFF-LINE SWITCHING REGULATOR - WITH POWER MOSFET OUTPUT

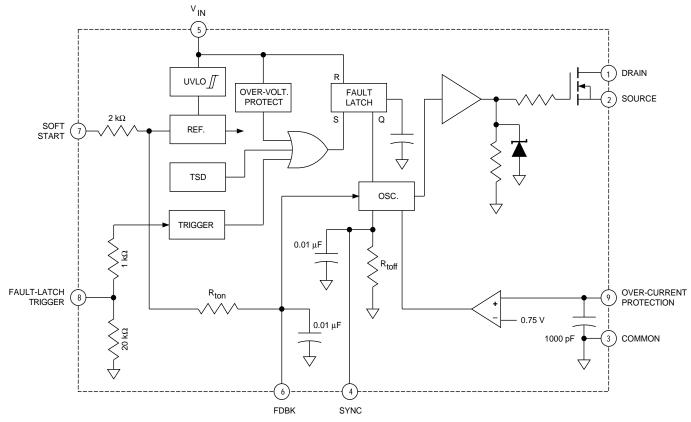
ABSOLUTE MAXIMUM RATINGS
Supply Voltage, V _{IN} 35 V
Drain-Source Voltage, V _{DS} 600 V
Continuous Drain Current, I _D 6.0 A
1 ms Single-Pulse Drain Current, I _{DM} 24 A
Single-Pulse Avalanche Energy, E _A 400 mJ
Feedback Input Current, I _{FDBK} 20 mA
Fault-Latch Trig. Input Current, I_{FL} 1.0 mA dc \leq 25%, I_{FLM} 50 mA
Soft-Start Output Current, I _{SS} 3.0 mA
Over-Current Protection Voltage, V _{OCP} 3.5 V
Insulation Voltage,V _{WM(RMS)} 2000 V
Package Power Diss., P _D See Graph
FET Junction Temperature, $T_J \dots +150^{\circ}C$
Internal Frame Temperature, T_F +125°C
Operating Temperature Range, T _A 20°C to +125°C
Storage Temperature Range, T _{sta} 30°C to +125°C

The STR-S6525 is specifically designed to meet the requirement for increased integration and reliability in off-line flyback converters operating in a constant OFF-time mode. The device incorporates the primary control and drive circuit with a discrete avalanche-rated highvoltage power MOSFET.

Crucial system parameters such as maximum ON time and OFF time are fixed during manufacture. Local control circuit decoupling and layout are optimized within the device.

Cycle-by-cycle current limiting, soft start, under-voltage lock-out with hysteresis, over-voltage protection, and thermal shutdown protect the device during all normal and overload conditions. Over-voltage protection, thermal shutdown, or an external fault signal be latched. The dual requirements of dielectric isolation and low transient thermal impedance and steady-state thermal resistance are satisfied in an overmolded single-in-line power package.

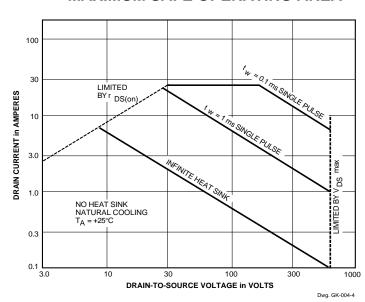
Proven in substantial volumes, this device and its fixed-frequency counterparts represents a significant advance in off-line SMPS reliability growth and integration.


FEATURES

- Constant OFF-Time Converter Operating Mode
- Avalanche-Rated Power MOSFET Switch
- Pulse-by-Pulse Current Limiting
- Latched Over-Voltage and Thermal Protection
- Maximum ON Time and OFF Time Set During Manufacture
- Internal Under-Voltage Lockout with Hysteresis
- Over-Molded SIP with Integral Isolated Heat Spreader
- External Synchronization Capability

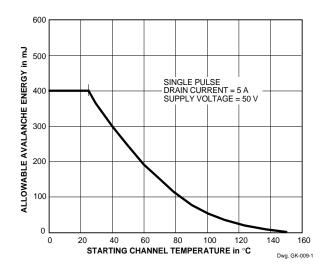
Always order by complete part number: |STR-S6525 |

FUNCTIONAL BLOCK DIAGRAM



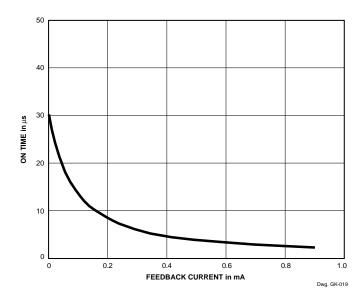
Dwg. FK-002-1

ALLOWABLE PACKAGE POWER DISSIPATION


MOUNTING SURFACE TEMPERATURE RECOMMENDED MAX. FRAME TEMP. = +100°C LIMITED BY FRAME TEMP. = +125°C MAX. 100 140 TEMPERATURE in °C Dwg. GK-003-2

MAXIMUM SAFE OPERATING AREA

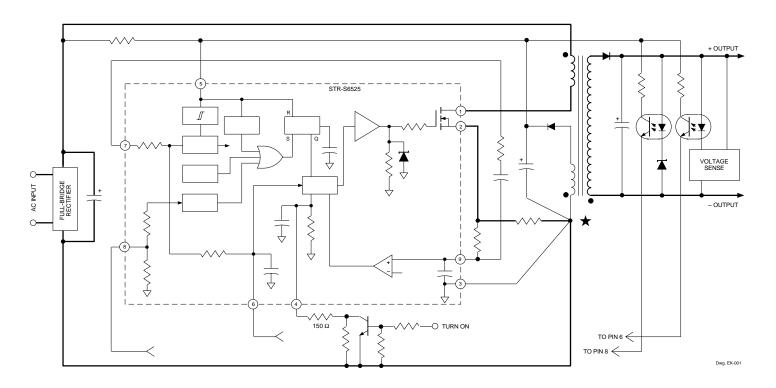
ALLOWABLE AVALANCHE ENERGY



ELECTRICAL CHARACTERISTICS at $T_A = +25^{\circ}C$, $V_{IN} = 18$ V, voltage measurements are referenced to Common (pin 3) (unless otherwise noted).

			Limits			
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
On-State Voltage	V _{INT}	Turn-on, increasing V _{IN}	14.4	_	17.6	V
Under-Voltage Lockout	V_{INQ}	Turn-off, decreasing V _{IN}	9.0	_	11	V
Over-Voltage Threshold	V _{OVP(th)}		26	_	31	V
FET Leakage Current	I _{DSS}	V _{DS} = 600 V	_	_	300	μΑ
FET ON Resistance	r _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 3 \text{ A}$	_	1.0	1.25	Ω
Output Fall Time	t _f	$V_{DD} = 200 \text{ V}, I_{D} = 5 \text{ A}, 10\% \text{ to } 90\% V_{DS}$	_	_	250	ns
Maximum ON Time	t _{on}	$I_{FDBK} = 0$	27	_	33	μs
Minimum OFF Time	t _{off}		50	_	62	μs
Over-Current Threshold	V _{OCP(th)}		700	_	800	mV
Feedback Threshold	V _{FDBK(th)}		_	750	_	mV
Soft-Start Voltage	V _{ss}		8.7	_	9.7	V
Sync. Trigger Threshold Volt.	V _{SYNC(th)}		_	3.0	_	V
Fault-Latch Trig. Threshold	V _{FL(th)}		680	_	880	mV
Fault-Latch Holding Current	I _{INH}	V _{IN} reduced from 31 V to 8.5 V	_	340	400	μΑ
Fault-Latch Reset Voltage	V_{INQ}	$I_{IN} \le 20 \mu A$, V_{IN} reduced from 31 V	6.5	_	8.5	V
Insulation RMS Voltage	V _{WM(RMS)}	All terminals simultaneous reference metal plate against backside	2000	_	_	V
Supply Current	I _{IN(ON)}	Operating	9.0	_	15	mA
	I _{IN(OFF)}	Start up, V _{IN} =14 V	1	_	200	μΑ
Thermal Shutdown	T_J		125	150	_	°C
Thermal Resistance	$R_{ heta JM}$	FET junction to mounting surface	1	2.0	-	°C/W

NOTES: Negative current is defined as coming out of (sourcing) the specified device terminal. Typical Data is for design information only.


TYPICAL CHARACTERISTICS

TYPICAL APPLICATION

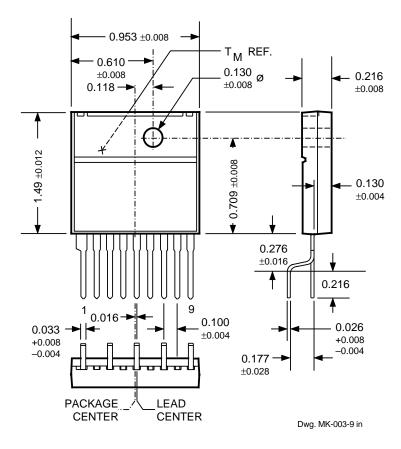
WARNING: lethal potentials are present. See text.

APPLICATIONS INFORMATION

WARNING — These devices are designed to be operated at lethal voltages and energy levels. Circuit designs that embody these components must conform with applicable safety requirements. Precautions must be taken to prevent accidental contact with power-line potentials. Do not connect grounded test equipment.

The use of an isolation transformer is recommended during circuit development and breadboarding.

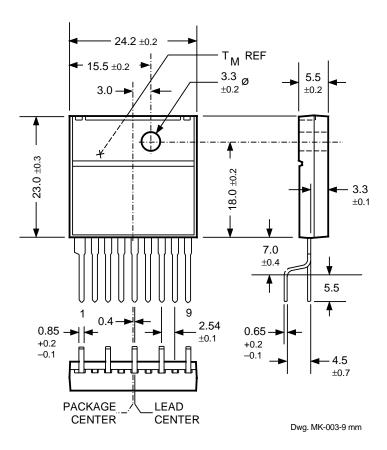
The power MOSFET outputs of these devices are similar to the International Rectifier type IRFBC40. These devices feature an excellent combination of fast switching, ruggedized device design, low on-resistance, and cost effectiveness.


Recommended mounting hardware torque:

4.34 - 5.79 lbf•ft (6 - 8 kg•cm or 0.588 - 0.784 Nm).

Recommended metal-oxide-filled, alkyl-degenerated oil base, silicone grease:

Dow Corning 340, or equivalent


Dimensions in Inches (Based on 1 mm = 0.03937")

NOTE: Exact body and lead configuration at vendor's option within limits shown.

Dimensions in Millimeters

POWER CONVERSION/POWER MANAGEMENT SELECTION GUIDES

SWITCHING REGULATOR PMCMs

Part							
Number*	Application	AC In	Max Po		Power Switch		
5703	Quasi-Resonant Flyback Converter	110/120 V	140 W	500 V	6 A	Bipolar	
5707	Quasi-Resonant Flyback Convertter	85-265 V 220/240V	90 W 140 W	850 V	6 A	Bipolar	
5708	Quasi-Resonant Flyback Converter	85-265 V 220/240 V	120 W 180 W	850 V	7.5 A	Bipolar	
6511	Quasi-Resonant Flyback Converter	110/120 V	180 W	450 V	11 A	MOSFET	
6703	Quasi-Resonant Flyback Converter	110/120V	140 W	500 V	6 A	Bipolar	
6704	Quasi-Resonant Flyback Converter	110/120 V	100 W	500 V	5 A	Bipolar	
6707	Quasi-Resonant Flyback converter	85-265 V 220/240 V	90 W 140 W	850 V	6 A	Bipolar	
6708	Quasi-Resonant Flyback Converter	85-265 V 220/240 V	120 W 180 W	850 V	7.5 A	Bipolar	
6709	Quasi-Resonant Flyback Converter	85-265 V 220/240 V	160 W 220 W	850 W	10 A	Bipolar	

^{*} Complete part number includes additional characters to indicate operating temperature range and package style.

LINEAR REGULATOR ICs

Part					
Number*	Vo	Max DC In	Max Dropout	Max I _O	Package
8184	3.0 V	10 V	300 mV @ 125 mA	250 mA	SOT-89
8187	3.3 V	10 V	300 mV @ 125 mA	250 mA	SOT-89
8188	2.5-3.3 V	10 V	300 mV @ 125 mA	250 mA	SOT-89
8188	2.5-3.3 V	10 V	300 mV @ 125 mA	250 mA	SOIC

^{*} Complete part number includes additional characters to indicate operating temperature range and package style.

Also — 83145 and 84145 Latched, Universal Input-Voltage Switches.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the design of its products. Components made under military approvals will be in accordance with the approval requirements.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

