540 \begin{tabular}{r}
No.4613 \\

\hline | Vertical Daflection Processor + Output |
| ---: |
| Amplifier for CRT Displays (Io max=2A) | \\

\hline
\end{tabular}

Overview

The STK79315A is a vertical deflection output IC that incorporates a vertical signal processor, output amplifier and related functions into a single package.

Applications

- Large screen, ultra-high definition CRT displays

Features

- Vertical deflection basic functions (vertical oscillator sawtooth waveform generator, output amplifier) built-in
- Vertical centering correction circuit built-in, variable over a wide range, DC controllable
- Pump-up circuit built-in for low power dissipation
- Supply-independent pump-up circuit to cover differen trace times
- High-current, high withstand voltage output amplifier $\left(I_{\text {Op-p }} \max =4 \mathrm{~A}\right.$ at $\mathrm{V}_{\mathrm{CC}} \max =160 \mathrm{~V}$)
- Wide vertical pull-in range ($>120 \mathrm{~Hz}$), adjustment-free oscillator
- DC controllable vertical amplitude
- Excellent frequency characteristics for an S-curve cor rection range
- Good interlace characteristics
- Quiescent current adjustment for zero crossover distor tion in the output amplifier
- Wide supply range for all loads

Package Dimensions

unit:mm

4144

No products described or contained herein are intended for use in surgical implants, life-support systems aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury death or property loss.

- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIO CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim o litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.

Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Vertical output block				
Supply voltage	Vcc^{6}	Pin 6	160	V
	$\mathrm{Vcc}^{7} 7$	Pins 7 and 8	80	V
Deflection curient	Pr.o	Pin 3	+2.0	A
Outpul current	10	Pin 2	± 0.7	A
Thermal resistance	0j-c1	Vertical outpul transistors 11 and 12	6.0	${ }^{\circ} \mathrm{CN}$
	${ }^{\text {0j-c2 }}$	Verical centering correction transistors 18 and 19	20	${ }^{\circ} \mathrm{CN}$
Deflection signal processor block				
Supply vollage	$\mathrm{Vcc}_{\text {c }} 17$	Pin 17	14	\checkmark
Junction lemperature	Ti		150	${ }^{\circ} \mathrm{C}$
Operating substrate temperature	Tc		105	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		$-3010+125$	${ }^{\circ} \mathrm{C}$

Operating Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{CC}} 17=12 \mathrm{~V}$

Parameter	Symbol	Conditions	min	typ	max	Unit
Defilection processor block						
Pin 17 current consumption	lcC^{17}		10	-	20	mA
Verical Irequency pullin range	t_{yp}	V. synci $=160 \mathrm{~Hz}$	120	-	-	Hz
Vertical free-running oscillator frequency	${ }^{\text {vosc }}$	$\mathrm{f}_{\text {vosc }}$ center $=55 \mathrm{~Hz}$	50	-	60	Hz
Vertical frequency adjustment voltage characteristic	Δt_{w}	$55 \mathrm{Hzat} \mathrm{Vcc}^{17}=12 \pm \mathrm{V}$	-0.1	-	+0.1	Hz
Vertical oscillator start voltage	$\mathrm{V}_{\text {vose }}$		-	-	4.0	V
Verlical frequency temperature charactaristic	fv_{5}		-0.028	-	+0.028	$\mathrm{Hz}^{\prime} \mathrm{C}$
Vertical amplitiude control pin vollage	V12		5.9	6.1	6.3	V
Ramp waveform generator current	111		55	60	65	$\mu \mathrm{A}$
Vertical ACIDC feedback pin volliage	V13		6.0	6.3	6.6	V
Vertical output block						
ldiling current	${ }_{\text {cco }}{ }^{6}$	$\mathrm{V} 6=\mathrm{V77}=35 \mathrm{~V}$	-	30	-	mA
Neutral voltage	V^{3}	$\mathrm{V} 6=\mathrm{V} 7=35 \mathrm{~V}$	-	21	-	V
Deflection outpul saturation volitage (lower)	$\mathrm{V}_{810} 3.9$	Between pins 3 and 9 , $\mathrm{V} 6=\mathrm{V} 7=35 \mathrm{~V}, 13=+1.3 \mathrm{~A}$	-	-	2.0	v
Deflection outpul saturation voltage (upper)	$V_{\text {sal }} 6$-3	$\begin{aligned} & \text { Between pins } 6 \text { and } 3, \\ & V 6=V 7=35 \mathrm{~V}, 13=-1.3 \mathrm{~A} \end{aligned}$	-	-	3.2	v
Pump-up charge saturation vollage (1)	$\mathrm{V}_{\text {sal }} 5$	Between pins 5 and 9 , $V B=35 \mathrm{~V}, 15=+30 \mathrm{~mA}$	-	-	2.0	v
Pump-up charge saturation vollage (2)	$V_{\text {stat }} 8.5$	Between pins 8 and 5 , $V 8=35 \mathrm{~V}, 15=-1.3 \mathrm{~A}$	-	-	3.0	V
Center correction saturation voltage (lower)	$\mathrm{V}_{\text {sal }}{ }^{2}-9$	Between pins 2 and 9 , $\mathrm{V} 7=35 \mathrm{~V} 1=+0.7 \mathrm{~A}$	-	-	2.0	V
Center correction saturation voltage (upper)	$V_{\text {sal }} 7.2$	Between pins 7 and 2 , $\mathrm{V} 7=35 \mathrm{~V}, \mathrm{I}=-0.7 \mathrm{~A}$	-	-	2.0	\checkmark

Note. Supply is of constant-vollage type

Sample Application Circuit (1)

Single-Supply Vertical Output Stage

Sample Application Circuit (2)

Dual-Supply Vertical Output Stage

Sample Application Circuit (3)
Dual-Supply Switching Vertical Output Stage

