SP 8000 SERIES

HIGH SPEED DIVIDERS

SP8750B,M SP8751B,M 1.0 GHz

UHF $\div 64$ PRESCALERS

The SP8750 range of devices are ECL divide-by-sixtyfours which will operate at frequencies up to 1.2GHz.

The device has a typical power dissipation of 470 mW at the nominal supply voltage of +6.8 V .

FEATURES

\author{

- Input Ports for VHF and UHF
 - Self-Biasing Clock Inputs
 (i. Variable Input Hysteries Capability for Wide Band Operation
 - TTL/MOS Compatible Band Change Input P:ısh Pull TTL. O/P
}

ABSOLUTE MAXIMUM RATINGS

| Power supply voltage $V_{C C}-V_{E E}$ | $O V$ to +10 V |
| :--- | ---: | ---: |
| Input voltage, clock inputs | $2.5 \mathrm{~V} p \cdot \mathrm{p}$ |
| Band change input | $+7.2 \mathrm{tc}-0.5 \mathrm{~V}$ or -10 mA |
| Output current | +30 mA to -30 mA |
| Operating junction temperature | $+150^{\circ} \mathrm{C}$ |
| Storage Temperature | $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Fig. 1 Pin connections

Fig. 2 Typical application

If the UHF input only is used and the device is required to operate with a sinewave input below 100 MHv , then the required hysteresis may be applied externally as shown in Fig. 5. Large values of hysteresis should be avoided as this will degrade the input sensitivity of the device at the maximum frequency. The divide by 64 output is designed to interface with TTL which has a common V_{EE} (ground). The specified fan-out of 3 standard TTL inputs may be increased to 6 standard or 5 high power/Schottky inputs at a logic zero level of 0.5 V . At low frequency the output will change when one of the clock inputs changes from a low to a high level.

The devices may be operated down to very low frequencies if a square wave input is applied with an edge speed of greater than $200 \mathrm{~V} / \mu \mathrm{s}$.

The divider is clocked on low to high transitions of either clock input.

ELECTRICAL CHARACTERISTICS

Supply voltage: $6.8 \mathrm{~V} \pm 0.35 \mathrm{~V}$
Supply current: 68 mA typ., 90 mA max.
Temperature range: ' B ' grade $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, ' M ' grade $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Clock inputs: AC coupled, self-biasing via 400Ω
Band change input: TTL type including negative input voltage clamp, 0.8 mA max. sink current
Test conditions (unless otherwise stated):
Supply voltage: $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+6.45 \mathrm{~V}$ to +7.15 V
Clock input voltage: 400 mV to 1.0 Vp -p
$T_{\text {amb }}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ('B' grade), $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (' M ' grade)

Characteristic	Type	Value			Units	Conditions
		Min.	Typ.	Max.		
UHF clock input						
Max. input frequency	SP8752	1.2			GHz	600 mV p -p input
	SP8751	1.1			GHz	$600 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}$ input
	SP8750	1.0			GHz	400 mV p-p input
Min. input frequency	All			100	MHz	$600 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}$ sinewave input
Min. slew rate for square wave input	All			200	$\mathrm{v} / \mu \mathrm{s}$	
VHF clock input						
Max. input frequency	All		1.0		GHz	
Min. input frequency			30	50	MHz	600 mV p-p sinewave input
Band change input						
High level	All	2.5			V	
Low level				0.4	V	
Low level input current	All			0.8	mA	
Max. clamp current	All	-3			mA	at approx. -0.7 V
Output						
High level	All	2.5	3.5	4.5	v	
Low level				0.4	v	5 mA current sink
Supply current	All		68	90	mA	$V_{C C}=6.8 \mathrm{~V}$

Fig. 3 AC test circuit

Fig. 4 Application circuit

Capacitors are 1 nf unless otherwise stated. Values should be increased if operation below 10 MHz is desired.
For 50 mV hysteresis $R 1=36 \mathrm{k} \Omega \mathrm{R} 2=\infty$
For 100 mV hysteresis $\mathrm{A} 1=18 \mathrm{k} \Omega$ R2 $=18 \mathrm{k} \Omega$

Fig. 5 Wideband operation

