SN74LS290

DECADE COUNTER; 4-BIT BINARY COUNTER

The SN54/74LS290 and SN54/74LS293 are high-speed 4-bit ripple type counters partitioned into two sections. Each counter has a divide-by-two section and either a divide-by-five (LS290) or divide-by-eight (LS293) section which are triggered by a HIGH-to-LOW transition on the clock inputs. Each section can be used separately or tied together (Q to $\overline{\mathrm{CP}}$) to form BCD , Bi-quinary, or Modulo-16 counters. Both of the counters have a 2 -input gated Master Reset (Clear), and the LS290 also has a 2-input gated Master Set (Preset 9).

- Corner Power Pin Versions of the LS90 and LS93
- Low Power Consumption . . . Typically 45 mW
- High Count Rates . . . Typically 42 MHz
- Choice of Counting Modes . . . BCD, Bi-Quinary, Binary
- Input Clamp Diodes Limit High Speed Termination Effects

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

DECADE COUNTER;
4-BIT BINARY COUNTER
LOW POWER SCHOTTKY

$\overline{\mathrm{CP}} \mathbf{D}_{0}$	Clock (Active LOW going edge) Input to $\div 2$ Section.
$\overline{\mathrm{CP} 1}$	Clock (Active LOW going edge) Input to $\div 5$ Section (LS290).
$\overline{\mathrm{CP} 1}$	Clock (Active LOW going edge) Input to $\div 8$ Section (LS293).
MR1, MR2	Master Reset (Clear) Inputs
MS1, MS2	Master Set (Preset-9, LS290) Inputs
Q0	Output from $\div 2$ Section (Notes b \& c)
Q1, Q2, Q3	Outputs from $\div 5 \& \div 8$ Sections (Note b)

ORDERING INFORMATION

SN54LSXXXJ	Ceramic
SN74LSXXXN	Plastic
SN74LSXXXD	SOIC

N SUFFIX
PLASTIC CASE 646-06

D SUFFIX SOIC CASE 751A-02

NOTES:
a) 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A} \mathrm{HIGH} / 1.6 \mathrm{~mA}$ LOW.
b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.
c) The Q_{0} Outputs are guaranteed to drive the full fan-out plus the $\overline{\mathrm{CP}}_{1}$ Input of the device.

LOGIC SYMBOL

Figure

$$
\begin{aligned}
& V_{C C}=\text { PIN } 14 \\
& \text { GND }=\text { PIN } 7 \\
& \text { NC }=\text { PINS } 2,6
\end{aligned}
$$

Figure
2.

LS293

LOGIC DIAGRAMS

FUNCTIONAL DESCRIPTION

The LS290 and LS293 are 4-bit ripple type Decade, and 4-Bit Binary counters respectively. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-five (LS290) or divide-by-eight (LS293) section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Q_{0} output of each device is designed and specified to drive the rated fan-out plus the CP_{1} input of the device.

A gated AND asynchronous Master Reset $\left(\mathrm{MR}_{1} \cdot\left[\mathrm{MR}_{2}\right)\right.$ is provided on both counters which overrides the clocks and resets (clears) all the flip-flops. A gated AND asynchronous Master Set $\left(\mathrm{MS}_{1} \cdot\left[\mathrm{MS}_{2}\right)\right.$ is provided on the LS290 which overrides the clocks and the MR inputs and sets the outputs to nine (HLLH).

Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes:

LS290

A. BCD Decade (8421) Counter - the $\overline{\mathrm{CP}}_{1}$ input must be externally connected to the Q_{0} output. The $\overline{\mathrm{CP}}_{0}$ input
receives the incoming count and a BCD count sequence is produced.
B. Symmetrical Bi-quinary Divide-By-Ten Counter - The Q_{3} output must be externally connected to the $\overline{\mathrm{CP}}_{0}$ input. The input count is then applied to the $\overline{\mathrm{CP}}_{1}$ input and a divide-by-ten square wave is obtained at output Q_{0}.
C. Divide-By-Two and Divide-By-Five Counter - No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function (CP_{0} as the input and Q_{0} as the output). The $\overline{\mathrm{CP}}_{1}$ input is used to obtain binary divide-by-five operation at the Q_{3} output.

LS293

A. 4-Bit Ripple Counter - The output Q_{0} must be externally connected to input $\overline{C P}_{1}$. The input count pulses are applied to input $\overline{C P}_{0}$. Simultaneous division of $2,4,8$, and 16 are performed at the Q_{0}, Q_{1}, Q_{2}, and Q_{3} outputs as shown in the truth table.
B. 3-Bit Ripple Counter - The input count pulses are applied to input $\overline{\mathrm{CP}}_{1}$. Simultaneous frequency divisions of 2,4 , and 8 are available at the Q_{1}, Q_{2} and Q_{3} outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3 -bit ripple-through counter.

LS290 MODE SELECTION

RESET/SET INPUTS				OUTPUTS
MR ${ }_{1}$	MR2	MS ${ }_{1}$	MS ${ }_{2}$	$\begin{array}{llll}Q_{0} & Q_{1} & Q_{2} & Q_{3}\end{array}$
H	H	L	X	L
H	H	X	L	L L L
X	X	H	H	H L L
L	X	L	x	Count
X	L	X		Count
L	X	X	L	Count
X	L	L	X	Count

BCD COUNT SEQUENCE

count	OUTPUT			
	$\mathrm{Q}_{\mathbf{0}}$	Q_{1}	$\mathrm{Q}_{\mathbf{2}}$	Q_{3}
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H

NOTE: Output Q_{0} is connected to Input CP_{1} for BCD count.

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care

LS293 MODE SELECTION

RESET INPUTS		OUTPUTS			
MR ${ }_{1}$	MR2	Q_{0}	Q_{1}	Q_{2}	Q_{3}
H	H	L	L	L	L
L	H				
H	L				
L	L				

TRUTH TABLE

count	OUTPUT			
	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H
10	L	H	L	H
11	H	H	L	H
12	L	L	H	H
13	H	L	H	H
14	L	H	H	H
15	H	H	H	H

guaranteed operating ranges

Symbol	Parameter	-	Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54 74	$\begin{gathered} 4.5 \\ 4.75 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 5.5 \\ 5.25 \end{gathered}$	V
T_{A}	Operating Ambient Temperature Range	$\begin{aligned} & 54 \\ & 74 \end{aligned}$	$\begin{gathered} -55 \\ 0 \end{gathered}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 125 \\ & 70 \end{aligned}$	${ }^{\circ} \mathrm{C}$
IOH	Output Current - High	54, 74			-0.4	mA
IOL	Output Current - Low	$\begin{aligned} & 54 \\ & 74 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions	
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed All Inputs	HIGH Voltage for
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs	
		74			0.8			
V_{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}$	18 mA
V_{OH}	Output HIGH Voltage	54	2.5	3.5		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table	
		74	2.7	3.5		V		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	54, 74		0.25	0.4	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \text { per Truth Table } \end{aligned}$
		74		0.35	0.5	V	$1 \mathrm{OL}=8.0 \mathrm{~mA}$	
$\mathrm{I}_{\text {IH }}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$	
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$	
$I_{\text {IL }}$	Input LOW Current MS, MR CP_{0} CP_{1} (LS290) $\overline{\mathrm{CP}}_{1}$ (LS293)				$\begin{array}{r} -0.4 \\ -2.4 \\ -3.2 \\ -1.6 \\ \hline \end{array}$	mA	$V_{C C}=M A X, V_{1}$	$0.4 \mathrm{~V}$
Ios	Short Circuit Current (Note 1)		-20		-100	mA	$V_{C C}=$ MAX	
ICC	Power Supply Current				15	mA	$\mathrm{V}_{C C}=$ MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\right)$

Symbol	Parameter	Limits						Unit
		LS290			LS293			
		Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {MAX }}$	CP_{0} Input Clock Frequency	32			32			MHz
$\mathrm{f}_{\text {MAX }}$	$\overline{\mathrm{CP}}_{1}$ Input Clock Frequency	16			16			MHz
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay, CP_{0} Input to Q_{0} Output		$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 16 \\ & 18 \end{aligned}$		$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 16 \\ & 18 \end{aligned}$	ns
$\begin{gathered} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \end{gathered}$	$\overline{C P}_{0}$ Input to Q_{3} Output		$\begin{aligned} & 32 \\ & 34 \end{aligned}$	$\begin{aligned} & 48 \\ & 50 \end{aligned}$		46 46	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\overline{\mathrm{CP}}_{1}$ Input to Q_{1} Output		$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{aligned} & 16 \\ & 21 \end{aligned}$		$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{aligned} & 16 \\ & 21 \end{aligned}$	ns
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	$\overline{C P}_{1}$ Input to Q_{2} Output		21 23	$\begin{aligned} & 32 \\ & 35 \end{aligned}$		21 23	$\begin{aligned} & 32 \\ & 35 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\overline{C P}_{1}$ Input to Q_{3} Output		$\begin{array}{r}21 \\ 23 \\ \hline\end{array}$	$\begin{aligned} & 32 \\ & 35 \end{aligned}$		$\begin{aligned} & 34 \\ & 34 \end{aligned}$	$\begin{aligned} & 51 \\ & 51 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	MS Input to Q_{0} and Q_{3} Outputs		20	30				ns
$\mathrm{t}_{\text {PHL }}$	MS Input to Q_{1} and Q_{2} Outputs		26	40				ns
$\mathrm{t}_{\text {PHL }}$	MR Input to Any Output		26	40		26	40	ns

AC SETUP REQUIREMENTS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits				Unit
		LS2	290	L		
		Min	Max	Min	Max	
tw	$\overline{\mathrm{CP}}_{0}$ Pulse Width	15	3	15		ns
tw	$\overline{\mathrm{CP}}_{1}$ Pulse Width	30	\cdots	30		ns
t_{W}	MS Pulse Width	15	-			ns
t_{W}	MR Pulse Width	15		15		ns
$\mathrm{t}_{\text {rec }}$	Recovery Time MR to $\overline{\mathrm{CP}}$	25		25		ns

RECOVERY TIME ($\mathrm{t}_{\text {rec }}$) is defined as the minimum time required between the end of the reset pulse and the clock transition form HIGH-to-LOW in order to recognize and transfer HIGH data to the Q outputs.

AC WAVEFORMS

Figure 1
*The number of Clock Pulses required between the $t_{\text {PHL }}$ and $t_{\text {PLH }}$ measurements can be determined from the appropriate Truth Tables.

Figure 2

Figure 3

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

