
- Compatible With IEEE Std 1194.1-1991 (BTL)
- TTL A Port, Backplane Transceiver Logic (BTL) B Port
- Open-Collector B-Port Outputs Sink 100 mA
- BIAS V_{CC} Pin Minimizes Signal Distortion During Live Insertion or Withdrawal
- High-Impedance State During Power Up and Power Down
- B-Port Biasing Network Preconditions the Connector and PC Trace to the BTL High-Level Voltage
- TTL-Input Structures Incorporate Active Clamping Networks to Aid in Line Termination
- Packaged in Plastic Quad Flatpack

description

The SN74FB2032 device is a 9-bit transceiver designed to translate signals between TTL and backplane transceiver logic (BTL) environments and to perform bus arbitration. It is designed specifically to be compatible with IEEE Std 1194.1-1991.

The \overline{B} port operates at BTL-signal levels. The open-collector \overline{B} ports are specified to sink 100 mA and have minimum output edge rates of 2 ns. Two output enables (OEB and \overline{OEB}) are provided for the \overline{B} outputs. When OEB is low, \overline{OEB} is high, or V_{CC} is less than 2.1 V, the \overline{B} port is turned off.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN74FB2032 9-BIT TTL/BTL COMPETITION TRANSCEIVER

SCBS175H - NOVEMBER 1991 - REVISED SEPTEMBER 1999

description (continued)

The A port operates at TTL-signal levels. The A outputs reflect the inverse of the data at the \overline{B} port when the A-port output enable, OEA, is high. When OEA is low or when V_{CC} is less than 2.1 V, the A outputs are in the high-impedance state.

The A-port data is latched when the latch enable (LE) is high. When LE is low, the latches are transparent.

The Futurebus protocol logic can be activated by taking $\overline{\text{COMPETE}}$ low. The module (device) then compares its A data (arbitration number) against the A data of another identical module also connected to the $\overline{\text{B}}$ arbitration bus, and sets WIN high if the A data is greater than the A data of the other module (i.e., has higher priority). A8 and $\overline{\text{B8}}$ are the most-significant bits, and A1 and $\overline{\text{B1}}$ are the least-significant bits. If OEB is high and $\overline{\text{OEB}}$ is low during this operation, and the A bus of the first module wins priority, the A bus asserts its arbitration number on the $\overline{\text{B}}$ -arbitration bus.

AP and \overline{BP} are the bus-parity bits. The winning module can assert \overline{BP} low if its parity bit (AP) is high.

In a typical operating sequence, a Futurebus arbitration controller latches its arbitration number into the A port and waits for the results of a competition. When the competition is complete, and if the controller's arbitration number did not win, the controller reads back the current value of the \overline{B} bus (by taking OEA high) and determines the winning arbitration number. This allows the module to change its arbitration number for the next competition cycle, if desired.

Pins are allocated for the four-wire IEEE Std 1149.1 (JTAG) test bus. TMS and TCK are not connected and TDI is shorted to TDO.

BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected.

BG V_{CC} and BG GND are the supply inputs for the bias generator.

The SN74FB2032 is characterized for operation from 0°C to 70°C.

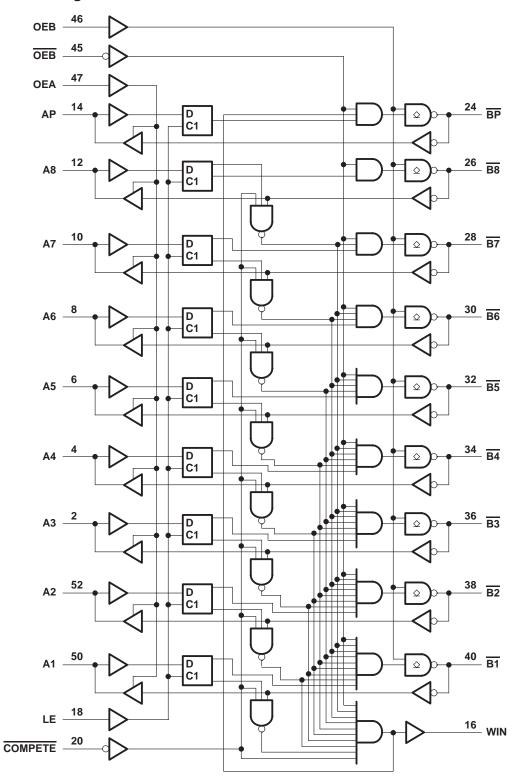
Function Tables

TRANSCEIVER

	INPUTS		FUNCTION
OEA	OEB	OEB	FUNCTION
L	Н	L	A data to B bus
Н	L	Х	<u> </u>
Н	Χ	Н	B data to A bus
Н	Н	L	A data to B bus, B data to A bus
L	L	Χ	Isolation
L	Χ	Н	isolation

WIN

		INPUTS		
OEB	OEB	COMPETE	DATA A1, A2†	WIN
Н	Н	Х	Х	L
Н	L	Н	Х	L
Н	L	L	A1 < A2	L
Н	L	L	A2 ≤ A1	Н


[†]A1 refers to the A data of Module 1 and A2 refers to the A data of Module 2. If LE = L, A = current A data. If LE = H, A = the value of A8–A1 prior to the most recent low-to-high transition of LE.

BP

	INPUTS OEB OEB WIN AP‡							
OEB	OEB	BP						
L	Х	Χ	Х	Н				
Х	Н	Χ	X	Н				
Н	L	L	X	Н				
Н	L	Н	L	Н				
Н	L	Н	Н	L				

‡ If LE = L, AP = current AP data. If LE = H, AP = the level of AP prior to the most recent low-to-high transition of LE.

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I : Except BP, B port	–1.2 V to 7 V
BP, B port	–1.2 V to 3.5 V
Voltage range applied to any \overline{B} output in the disabled or power-off state, V_O	
Voltage range applied to any output in the high state, VO	
Input clamp current, I _{IK} : Except B port	–40 mA
B port	−18 mA
Current applied to any single output in the low state, IO: A port	48 mA
<u>B</u> port	200 mA
Package thermal impedance, θ _{JA} (see Note 1)	44°C/W
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 2)

			MIN	NOM	MAX	UNIT	
VCC, BIAS V _{CC} , BG V _{CC}	Supply voltage		4.5	5	5.5	V	
V	BP, B port		1.62		2.3		
VIH	High-level input voltage	Except B port	2			\ \	
\/	Low level input voltage	BP, B port	0.75		1.47	V	
V _{IL}	Low-level input voltage	Except B port			0.8	V	
lıK	Input clamp current				-18	mA	
loн	High-level output current	AP, WIN, A port			-3	mA	
la.	Louis louis autout aureant	AP, WIN, A port			24	A	
lOL	Low-level output current BP, B port				100	mA	
T _A	Operating free-air temperature	•	0		70	°C	

NOTE 2: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST	CONDITIONS	MIN	TYP [†]	MAX	UNIT
Vina	BP, B port	V _{CC} = 4.5 V,	I _I = -18 mA			-1.2	V
VIK	Except BP, B port	V _{CC} = 4.5 V,	I _I = -40 mA			-0.5	V
Vall	AP, WIN, A port	V _{CC} = 4.5 V	I _{OH} = -1 mA				V
VOH	Ar, Will, A port	VCC = 4.5 V	$I_{OH} = -3 \text{ mA}$	2.5	3.3		V
	AP, WIN, A port	V _{CC} = 4.5 V	$I_{OL} = 20 \text{ mA}$				
V/01	Ar, Will, A port	VCC = 4.5 V	$I_{OL} = 24 \text{ mA}$		0.35	0.5	V
VOL	BP, B port	V _{CC} = 4.5 V	$I_{OL} = 80 \text{ mA}$	0.75		1.1	v
	ве, в роп	VCC = 4.5 V	I _{OL} = 100 mA			1.15	
Ц	Except BP, B port	$V_{CC} = 5.5 \text{ V},$	V _I = 5.5 V			50	μΑ
I _{IH} ‡	Except BP, B port	$V_{CC} = 5.5 V,$	V _I = 2.7 V			50	μΑ
. +	Except BP, B port	$V_{CC} = 5.5 \text{ V},$	V _I = 0.5 V			-50	μА
1 ₁ L‡	BP, B port	V _{CC} = 5.5 V,	V _I = 0.75 V			-100	μΑ
lozh	AP, WIN, A port	$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V},$	$V_0 = 2.7 \text{ V}$			50	mA
lozL	AP, WIN, A port	$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V},$	V _O = 0.5 V			-50	mA
lozpu	AP, WIN, A port	$V_{CC} = 0 \text{ V to } 2.1 \text{ V},$	$V_0 = 0.5 \text{ V to } 2.7 \text{ V}$			50	mA
lozpd	AP, WIN, A port	$V_{CC} = 2.1 \text{ V to 0 V},$	$V_0 = 0.5 \text{ V to } 2.7 \text{ V}$			-50	mA
ІОН	BP, B port	$V_{CC} = 0 \text{ to } 5.5 \text{ V},$	V _O = 2.1 V			100	μΑ
los§	AP, WIN, A port	V _{CC} = 5.5 V,	VO = 0	-30		-150	mA
100	A port to B port	Vac 55V	la 0			55	mA
Icc	B port to A port	V _{CC} = 5.5 V,	IO = 0			65	IIIA
Ci	Control Inputs	V _I = 0.5 V or 2.5 V			4		pF
Co	WIN port	V _O = 0.5 V or 2.5 V			8		pF
	A port	V _O = 0.5 V to 2.5 V			7		
C _{io}	B port per IEEE Std 1194.1-1991	V _{CC} = 0 V to 5.5 V			·	5	pF

live-insertion specifications over recommended operating free-air temperature range

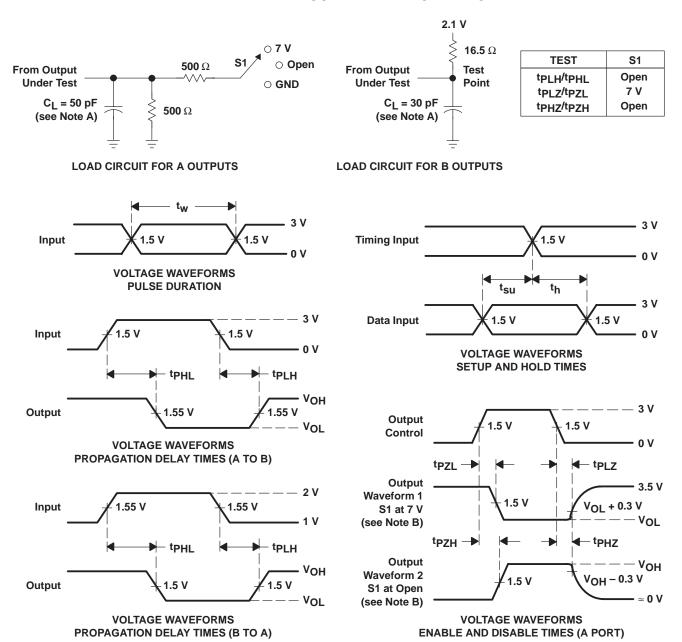
PAR	AMETER		MIN	MAX	UNIT		
I _{CC} (BIAS V _{CC})		V _{CC} = 0 to 4.5 V	C = 0 to 4.5 V $V_B = 0 \text{ to } 2 \text{ V},$ $V_I \text{ (BIAS V}_{CC}) = 4.5 \text{ V to } 5.5 \text{ V}$			450	μA
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ $V_{B} = 0 \text{ to } 2 \text{ V},$ $V_{I} \text{ (BIAS V}_{CC}) = 4.5 \text{ V}$		V (BIAS VCC) = 4.5 V to 5.5 V		10	μΑ
VO	B port	$V_{CC} = 0$,	V _I (BIAS V _{CC}) = 5 V		1.62	2.1	V
		$V_{CC} = 0$,	$V_B = 1 V$,	V_I (BIAS V_{CC}) = 4.5 V to 5.5 V	-1		
lo	B port	$V_{CC} = 0 \text{ to } 5.5 \text{ V},$	OEB = 0 to 0.8 V			100	μΑ
		$V_{CC} = 0 \text{ to } 2.2 \text{ V},$	OEB = 0 to 5 V			100	

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. ‡ For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current. § Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

SN74FB2032 9-BIT TTL/BTL COMPETITION TRANSCEIVER

SCBS175H - NOVEMBER 1991 - REVISED SEPTEMBER 1999

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)


			V _{CC} =	= 5 V, 25°C	MIN	MAX	UNIT
			MIN	MAX			
t _W	Pulse duration	LE high or low	3.3		3.3		ns
		Data high before LE↑ (A to B)	1.5		1.5		
١.	Setup time	Data low before LE↑	e LE↑ 1.4		1.4		ns
t _{su}		Data high before LE↑ (A to WIN)	1.9		1.9		
		Data low before LE↑	1.7		1.7		
		Data high before LE↑ (A to B)	1.7		1.7		
. .	Hold time	Data low after LE↑	1.3		1.3		
t _h		Data high before LE↑ (A to WIN)	1.6		1.6		ns
		Data low after LE↑	0.9		0.9		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

F	PARAMETER	FROM (INPUT)	TO (OUTPUT)	V(V _{CC} = 5 V, T _A = 25°C			MAX	UNIT
		(1141 01)	(001101)	MIN	TYP	MAX			
	^t PLH	H A or AP B or BP		2.9	5.2	6.5	2.7	7	ns
	^t PHL	AUIAP	B or BP	3	4.9	6.3	2.8	6.6	115
	^t PLH	A	<u> </u>	3.1	5.6	7.4	2.5	8.4	ns
	^t PHL		<u>B</u> _{n − 1}	3.4	5.6	7.4	3.2	9	115
	^t PLH	A	BP	4.5	6.6	8.1	4	8.9	ns
	^t PHL		ВР	4.1	6.3	7.7	3.8	8.4	115
	^t PLH	B	<u> </u>	5.5	8.4	10.8	4.8	11.4	ns
	^t PHL	В	<u>B</u> n − 1	5.5	7.4	8.9	4.9	10	115
	^t PLH	LE	B or BP	3.7	5.6	6.8	3.4	7.3	no
	^t PHL		B OL Bb	3.5	5.1	6.1	3.1	6.8	ns
	^t PLH	= ==	4 45	3	5.3	7	2.9	7.2	
	^t PHL	B or BP	A or AP	2.8	4.6	5.9	2	6.1	ns
	^t PLH	_	14/15/	4	6	7.2	3.4	8.2	
	^t PHL	B	WIN	4.2	6.6	8.6	3.9	8.9	ns
	^t PLH	,	14/15/	1.9	4.1	5.4	1.7	5.9	ns
	^t PHL	- A	WIN	1.9	4	5.3	1.6	6	
	^t PLH			2.4	4.4	5.7	2.1	6.4	ns
	t _{PHL}	LE	WIN	1.9	3.5	4.5	1.6	4.9	
	tPLH			1.6	3.4	4.5	1.3	5	
	tPHL	COMPETE	WIN	1.7	3.4	4.4	1.5	4.9	ns
	tPLH			1.7	3.5	4.7	1.4	5.4	
	tPHL	OEB	WIN	2.2	3.8	4.7	2	5	ns
	tPLH		_	3.2	5.2	6.6	2.7	7.3	
	tPHL	COMPETE	B	3.8	5.6	6.7	3.5	7.3	ns
	t _{PLH}			3.9	6.2	7.6	3.8	7.8	
	tPHL	COMPETE	BP	3.9	5.7	7	3.4	7.8	ns
	tPLH			3.1	5.3	6.7	2.9	7.3	
	tPHL	OEB	B	3.4	5.4	6.7	3.2	7.2	ns
	tPLH			4.6	6.7	8.1	4.4	8.6	
	tPHL	OEB	B	3.7	5.9	8.1	3.4	8.9	ns
	t _{PZH}			2.5	4.3	6	2.2	6.3	
	t _{PZL}	OEA	A	2.2	3.9	5.3	2.2	5.8	ns
	t _{PHZ}			1.7	3.4	4.9	1.3	5.5	
	tPLZ	OEA	A	1.9	3.7	5.4	1.7	5.7	ns
		A		1	0.8	J		J	
tsk(p)	Pulse skew	$\frac{1}{\overline{B}}$	A	+	0.5				ns
	 	A	B	+	0.8				
tsk(o)	Pulse skew	B	A	+	0.6				ns
t _r	Rise time, 1.3 V to			1	2.2	3.2	1	3.2	ns
tf	Fall time, 1.3 V to	•		1	1.3	2.3	1	2.5	ns
	input pulse rejection	·		1		0	1		ns

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: TTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns; BTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

PACKAGE OPTION ADDENDUM

18-Aug-2011

PACKAGING INFORMATION

Orderable Device	Status (1) Pa	ackage Typ	e Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
SN74FB2032RC	OBSOLETE	QFP	RC	52		TBD	Call TI	Call TI	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

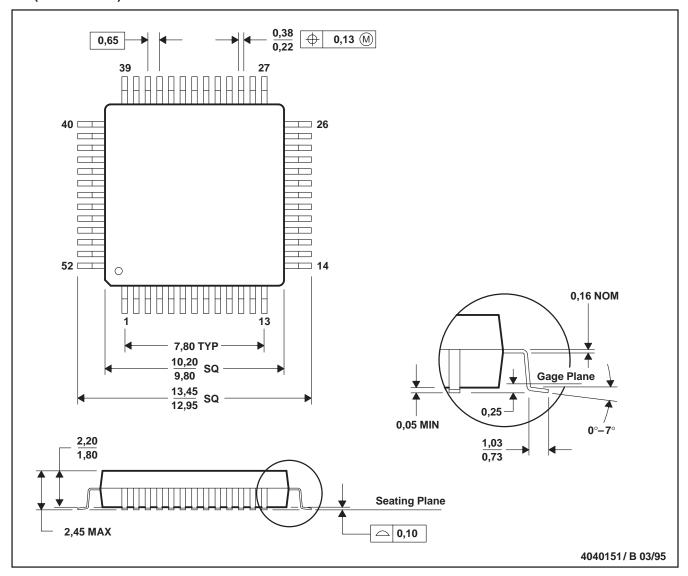
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

RC (S-PQFP-G52)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-022

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications

interface.ti.com

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Security

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Mobile Processors www.ti.com/omap

Interface

Wireless Connctivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page <u>e2e.ti.com</u>

www.ti.com/security