SCES187D-JANUARY 1999-REVISED JULY 2005

FEATURES

- Members of the Texas Instruments Widebus™
 Family
- Universal Bus Transceiver (UBT[™]) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, Clocked, or Clock-Enabled Modes
- Translate Between GTL/GTL+ Signal Levels and LVTTL Logic Levels
- Support Mixed-Mode (3.3-V and 5-V) Signal Operation on A-Port and Control Inputs
- B-Port Transition Time Optimized for Distributed Backplane Loads
- I_{off} Supports Partial-Power-Down Mode Operation

- Bus Hold on A-Port Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Distributed V_{CC} and GND-Pin Configuration Minimizes High-Speed Switching Noise
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Ceramic Flat (WD) Packages

DESCRIPTION

The 'GTL16612A devices are 18-bit universal bus transceivers (UBT) that provide LVTTL-to-GTL+ and GTL+-to-LVTTL signal-level translation. They allow for transparent, latched, clocked, or clock-enabled modes of data transfer. These devices provide a high-speed interface between cards operating at LVTTL logic levels and backplanes operating at GTL+ signal levels. High-speed (about two times faster than standard LVTTL or TTL) backplane operation is a direct result of the reduced output swing (<1 V), reduced input threshold levels, and output edge control (OEC™). Improved GTL+ OEC circuits minimize bus settling time and have been designed and tested using several backplane models.

Figure 1 shows actual device output waveforms using a synchronous clock at 75 MHz. The test backplane is a 16-slot, 14-inch board with loaded impedance of 33 Ω . V_{TT} is 1.5 V, V_{REF} is 1 V, and R_{TT} pullup resistor is 50 Ω . The driver is in slot 8, with receivers in alternate slots 1, 3, 5, 7, 10, 12, 14, and 16. Receiver slot-1 signals are shown. The signal becomes progressively worse as the receiver moves closer to the driver or the spacing between receiver cards is reduced. The clock is independent of the data, and the system clock frequency is limited by the backplane flight time to about 80-90 MHz. This frequency can be increased even more (30% to 40%) if the clock is generated and transmitted together with the data from the driver card (source synchronous).

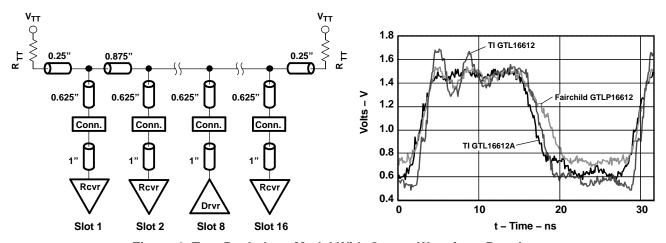


Figure 1. Test Backplane Model With Output Waveform Results

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus, UBT, OEC, TI are trademarks of Texas Instruments.

SCES187D-JANUARY 1999-REVISED JULY 2005

DESCRIPTION (CONTINUED)

Additional design considerations can be found in *Application Information* at the end of this data sheet.

These 18-bit universal bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, clocked, and clock-enabled modes. These UBTs can replace any of the functions shown in Table 1.

Table 1. 'GTL16612A UBT Replacement Functions

FUNCTION	8 BIT	9 BIT	10 BIT	16 BIT	18 BIT			
Transceiver	'245, '623, '645	'863	'861	'16245, '16623	'16863			
Buffer/driver	'241, '244, '541		'827	'16241, '16244, '16541	'16825			
Latched transceiver	'543			'16543	'16472			
Latch	'373, '573	'843	'841	'16373	'16843			
Registered transceiver	'646, '652			'16646, '16652	'16474			
Flip-flop	'374, '574		'821	'16374				
Standard UBT					'16500, '16501			
Universal bus driver					'16835			
Registered transceiver with CLK enable	'2952			'16470, '16952				
Flip-flop with CLK enable	'377	'823			'16823			
Standard UBT with CLK enable					'16600, '16601			
'GTL16612A UBT replaces all above functions								

GTL+ is the Texas Instruments (TI^{TM}) derivative of the Gunning transceiver logic (GTL) JEDEC standard JESD 8-3. The AC specification of the 'GTL16612A is given only at the preferred higher noise margin GTL+, but this device can be used at either GTL ($V_{TT} = 1.2 \text{ V}$ and $V_{REF} = 0.8 \text{ V}$) or GTL+ ($V_{TT} = 1.5 \text{ V}$ and $V_{REF} = 1 \text{ V}$) signal levels.

The B port normally operates at GTL or GTL+ levels, while the A-port and control inputs are compatible with LVTTL logic levels and are 5-V tolerant. V_{REF} is the reference input voltage for the B port.

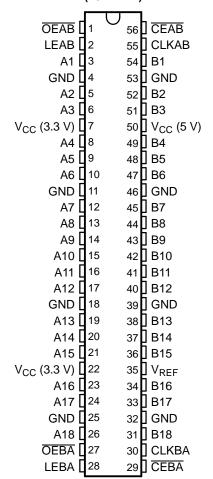
To improve signal integrity, the 'GTL16612A B-port output transition time is optimized for distributed backplane loads.

 V_{CC} (5 V) supplies the internal and GTL circuitry, while V_{CC} (3.3 V) supplies the LVTTL output buffers.

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock or latch enable can be controlled by the clock-enable (CEAB and CEBA) inputs. For A-to-B data flow, the devices operate in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CEAB is low and CLKAB is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB if CEAB also is low. When OEAB is low, the outputs are active. When OEAB is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that for A to B, but uses OEBA, LEBA, CLKBA, and CEBA.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

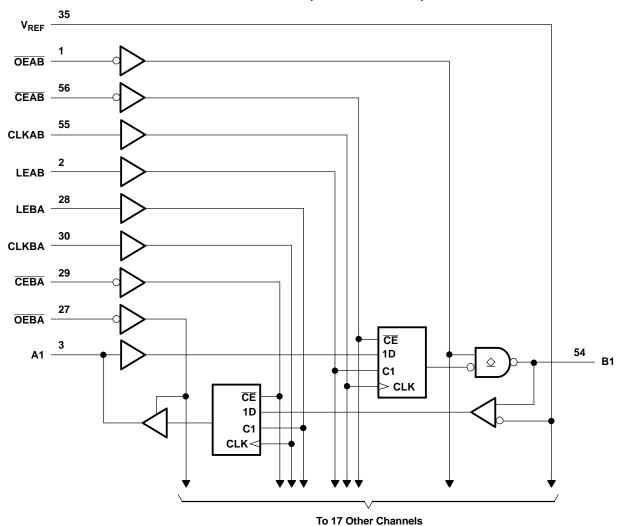
Active bus-hold circuitry holds unused or undriven LVTTL inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.


These devices are fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.

The SN54GTL16612A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74GTL16612A is characterized for operation from -40°C to 85°C.

SCES187D-JANUARY 1999-REVISED JULY 2005

SN54GTL16612A... WD PACKAGE SN74GTL16612A... DGG OR DL PACKAGE (TOP VIEW)



FUNCTION TABLE(1)

		INPUTS			OUTPUT	MODE
CEAB	OEAB	LEAB	CLKAB	Α	В	MODE
Х	Н	Χ	Χ	Χ	Z	Isolation
L	L	L	Н	Χ	B ₀ ⁽²⁾	Latabad ataraga of A data
L	L	L	L	X	B ₀ ⁽³⁾	Latched storage of A data
Х	L	Н	Χ	L	L	Transparent
X	L	Н	Χ	Н	Н	Transparent
L	L	L	↑	L	L	Clacked storage of A data
L	L	L	\uparrow	Н	Н	Clocked storage of A data
Н	L	L	Х	Х	B ₀ ⁽³⁾	Clock inhibit

- (1) A-to-B data flow is shown. B-to-A data flow is similar, but uses OEBA, LEBA, CLKBA, and CEBA.
 (2) Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low
- (3) Output level before the indicated steady-state input conditions were established

LOGIC DIAGRAM (POSITIVE LOGIC)

SCES187D-JANUARY 1999-REVISED JULY 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V	Cumply yeltone ronge	3.3 V	-0.5	4.6	V
V _{CC}	Supply voltage range	5 V	-0.5	7	V
V	Input voltage range (2)	A-port and control inputs	-0.5	7	V
VI	Input voltage range ⁽²⁾	B port and V _{REF}	-0.5	4.6	V
Vo	Voltage range applied to any output	A port	-0.5	7	V
	in the high or power-off state ⁽²⁾	B port	-0.5	4.6	\ \
	Comment into any systematic the law state	A port		128	A
I _O	Current into any output in the low state	B port		80	mA
Io	Current into any A-port output in the high state (3)			64	mA
	Continuous current through each V _{CC} or GND			±100	mA
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
θ_{JA}	Declare the model importance (4)	DGG package		64	°C/W
	Package thermal impedance (4)	DL package		56	C/VV
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- (3) This current flows only when the output is in the high state and $V_O > V_{CC}$.
- (4) The package thermal impedance is calculated in accordance with JESD 51.

Recommended Operating Conditions (1)(2)(3)

			SN54	GTL166	12A	SN74	GTL166	12A	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNII
V	Cupply voltoge	3.3 V	3.15	3.3	3.45	3.15	3.3	3.45	V
V _{CC}	Supply voltage	5 V	4.75	5	5.25	4.75	5	5.25	V
V	Termination	GTL	1.14	1.2	1.26	1.14	1.2	1.26	V
V _{TT}	voltage	GTL+	1.35	1.5	1.65	1.35	1.5	1.65	V
\/	Cupply voltage	GTL	0.74	0.8	0.87	0.74	0.8	0.87	V
V_{REF}	Supply voltage	GTL+	0.87	1	1.1	0.87	1	1.1	V
\/	Input voltage	B port			V _{TT}			V _{TT}	V
VI		Except B port			5.5			5.5	
.,	High-level input voltage	B port	V _{REF} + 50 mV			V _{REF} + 50 mV			V
V _{IH}		Except B port	2			2			V
V	Low-level	B port			V _{REF} – 50 mV			V _{REF} – 50 mV	V
V_{IL}	input voltage	Except B port			0.8			0.8	V
I _{IK}	Input clamp current				-18			-18	mA
I _{OH}	High-level output current	A port			-32			-32	mA
I _{OL}	Low-level output current	A port			64			64	A
		B port			34			34	mA
T _A	Operating free-air to	emperature	-55		125	-40		85	°C

⁽¹⁾ All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

⁽²⁾ Normal connection sequence is GND first, $V_{CC} = 5 \text{ V}$ second, and $V_{CC} = 3.3 \text{ V}$, I/O, control inputs, V_{TT} , and V_{REF} (any order) last.

⁽³⁾ V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances as long as they do not exceed the DC absolute I_{OL} ratings. Similarly, V_{REF} can be adjusted to optimize noise margins, but normally is 2/3 V_{TT}.

SCES187D-JANUARY 1999-REVISED JULY 2005

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST SOUR	TIONS	SN54G	ΓL16612A	SN74GTL16612A			
PAKAMETER		TEST COND	IIONS	MIN	TYP ⁽¹⁾ MAX	MIN	TYP ⁽¹⁾ MA	X UNI	
V _{IK}		V _{CC} (3.3 V) = 3.15 V, V _{CC} (5 V) = 4.75 V	I _I = -18 mA	-1.2			-1	.2 V	
V _{OH}	A port	V_{CC} (3.3 V) = 3.15 V to 3.45 V, V_{CC} (5 V) = 4.75 V to 5.25 V	$I_{OH} = -100 \mu A$	V _{CC} (3.3 V) - 0.2		V _{CC} (3.3 V) - 0.2		V	
• ОП	7. 50.1	V_{CC} (3.3 V) = 3.15 V,	$I_{OH} = -8 \text{ mA}$	2.4		2.4			
		V_{CC} (5 V) = 4.75 V	$I_{OH} = -32 \text{ mA}$	2		2			
			I _{OL} = 100 μA		0.2		0	.2	
	A port	V_{CC} (3.3 V) = 3.15 V,	I _{OL} = 16 mA		0.4		0	.4	
V_{OL}	A port	V_{CC} (5 V) = 4.75 V	I _{OL} = 32 mA		0.5		0	.5 V	
			I _{OL} = 64 mA		0.6		0.8	55	
	B port	V_{CC} (3.3 V) = 3.15 V, V_{CC} (5 V) = 4.75 V, I _{OL} = 34 mA		0.65		0.6	35	
	Control inputs	V_{CC} (3.3 V) = 0 or 3.45 V, V_{CC} (5 V) = 0 or 5.25 V	V _I = 5.5 V		10			10	
			V _I = 5.5 V		1000		2	20	
I _I	A port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V	$V_{I} = V_{CC} (3.3 \text{ V})$		1			1 μA	
ı		V _{CC} (3 V) = 3.23 V	V _I = 0		-30		-;	30	
	5 .	V_{CC} (3.3 V) = 3.45 V,	$V_{I} = V_{CC} (3.3 \text{ V})$		5			5	
	B port	V _{CC} (5 V) = 5.25 V	V _I = 0		-5		-	-5	
I _{off}	"	$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 V		1000		10)0 μΑ	
			V _I = 0.8 V	75	75				
La	A port	V_{CC} (3.3 V) = 3.15 V,	V _I = 2 V	-75		-75		μΑ	
I _{I(hold)}	Aport	V_{CC} (5 V) = 4.75 V	$V_1 = 0 \text{ to } V_{CC}$ $(3.3 \text{ V})^{(2)}$		±500		±50		
I _{OZH}	A port	V _{CC} (3.3 V) = 3.45 V, V _{CC} (5 V) = 5.25 V	$V_{O} = V_{CC} (3.3 \text{ V})$		1			1 μA	
02	B port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V, V_{O} = 1.5 V			10	10			
	A port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V, V _O = 0		-1		-	-1	
l _{OZL}	B port	V_{CC} (3.3 V) = 3.45 V, V_{CC} (5 V) = 5.25 V, V _O = 0.65 V		-10			μA 10	
		V_{CC} (3.3 V) = 3.45 V,	Outputs high		1			1	
I _{CC} (3.3 V)	A or B port	V_{CC} (5 V) = 5.25 V, I_{O} = 0, V_{I} = V_{CC} (3.3 V) or GND ⁽³⁾ ,	Outputs low		5			5 mA	
(0.0 V)	Броп	$V_1 = V_{TT}$ or $GND^{(4)}$	Outputs disabled		1			1	
		V_{CC} (3.3 V) = 3.45 V,	Outputs high		120		12	20	
I _{CC} (5 V)	A or B port	V_{CC} (5 V) = 5.25 V, I_{O} = 0, V_{I} = V_{CC} (3.3 V) or GND ⁽³⁾ ,	Outputs low		120		12	20 mA	
(3 V)	ь роп	$V_1 = V_{CC} (3.3 \text{ V}) \text{ of GND}^{(4)}$	Outputs disabled		120		12	20	
ΔI _{CC} (3.3 V) ⁽⁵⁾		V _{CC} (3.3 V) = 3.45 V, V _{CC} (5 V) One A-port or control input at 2 Other A-port or control inputs a	2.7 V,		1			1 mA	
C _i	Control inputs	V _I = 3.15 V or 0			4 12		4	pF	
C	A port	V _O = 3.15 V or 0			8.5 18		8.5	,r	
C_{io}	B port	V _O = 1.5 V or 0			10		8	pF	

⁽¹⁾ All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, T_A = 25°C. (2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

This is the V_I for A-port or control inputs.

This is the V_I for B port.

⁽⁵⁾ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCES187D-JANUARY 1999-REVISED JULY 2005

Timing Requirements

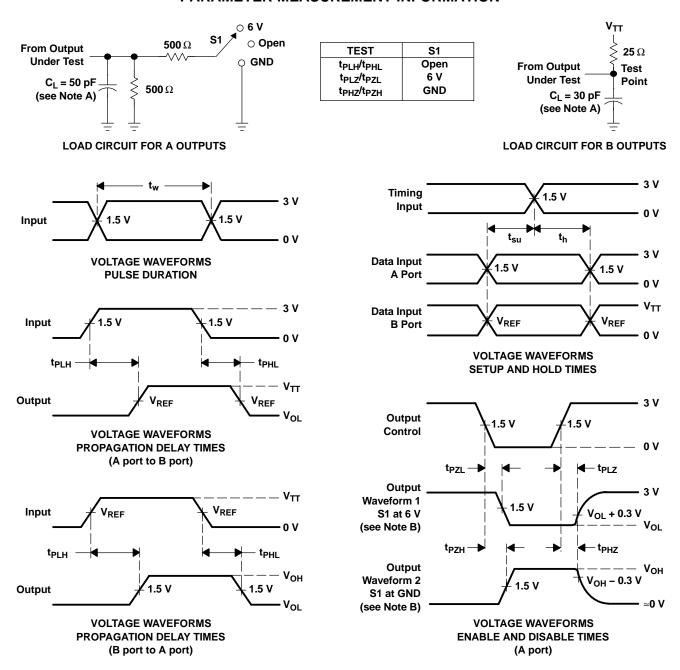
over recommended ranges of supply voltage and operating free-air temperature, $V_{TT} = 1.5 \text{ V}$ and $V_{REF} = 1 \text{ V}$ for GTL+ (unless otherwise noted) (see Figure 2)

			SN54GTL16	612A ⁽¹⁾	SN74GTL1	6612A	LINUT	
			MIN	MAX	MIN	MAX	UNIT	
f _{clock}	Clock frequency			85		85	MHz	
	Pulse duration	LEAB or LEBA high	3.3		3.3		20	
t _w	Pulse duration	CLKAB or CLKBA high or low	5.7		5.7		ns	
		A before CLKAB↑	1		1			
		B before CLKBA↑	2.7		1.8			
	Setup time	A before LEAB↓	1.7		0.5			
t _{su}		B before LEBA↓	1.2		1.2		ns	
		CEAB before CLKAB↑	1.3		1.2			
		CEBA before CLKBA↑	1.8		1.4			
		A after CLKAB↑	3.2		1.9			
		B after CLKBA↑	4.3		0.5			
	Hald time	A after LEAB↓	3.2		2.7			
t _h	Hold time	B after LEBA↓	4.2		3.5		ns	
		CEAB after CLKAB↑	2.4		1.2			
		CEBA after CLKBA↑	1.1		1.1			

⁽¹⁾ Product preview

Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature, $V_{TT} = 1.5 \text{ V}$ and $V_{REF} = 1 \text{ V}$ for GTL+ (see Figure 2)


PARAMETER	FROM	то	SN54	GTL16612A ⁽¹⁾	SN7	SN74GTL16612A			
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP ⁽²⁾ MA	MIN	TYP ⁽²⁾	MAX	UNIT	
f _{max}			85		85			MHz	
t _{PLH}	Α	В	2	7.	3 2.5		6.9	ns	
t _{PHL}	A	Ь	2.2	7.	2.5		6.9	115	
t _{PLH}	LEAB	В	2.2	7.	3.2		7.3	ns	
t _{PHL}	LLAD	Ь	2.3	7.	3.2		7.3	115	
t _{PLH}	CLKAB	В	2.1		3.4		7.8	ns	
t _{PHL}	CLNAB	D	2.5	7.	3.4		7.8	115	
t _{en}	<u>OEAB</u>	В	1.8	7.	2.8		7	ns	
t _{dis}	OLAB	Ь	1.8		2.8		7		
t _r	Transition time, B or	utputs (20% to 80%)		2.6		2.6		ns	
t _f	Transition time, B or	utputs (80% to 20%)		2.6		2.6		ns	
t _{PLH}	В	А	1.4	6.	1.5		5.7	ns	
t _{PHL}	В	Α	1.3	6.	1.5		5.7	115	
t _{PLH}	LEBA	А	1.5	6.	1.8		5.7	ns	
t _{PHL}	LLDA	Α	1		1.8		5.7	115	
t _{PLH}	CLKBA	А	1.8	5.	2.3		5.5	ne	
t _{PHL}	CLNDA	A	2	5.	2.3		5.5	ns	
t _{en}	OEBA	А	0.5	6.	1.8		6.1	ns	
t _{dis}	OLDA	A	1.3	6.	1.8		6.1		

¹⁾ Product preview

⁽²⁾ All typical values are at V_{CC} (3.3 V) = 3.3 V, V_{CC} (5 V) = 5 V, T_A = 25°C.

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50~\Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
 - D. The outputs are measured one at a time, with one transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

SCES187D-JANUARY 1999-REVISED JULY 2005

APPLICATION INFORMATION

GTL Background Information

GTL was approved as JEDEC standard JESD 8-3 in 1993 and originally was created as a reduced-swing I/O driver technology to support high-speed buses and backplanes. The GTL bus is designed to work with low voltage swings. The input buffer works like an analog comparator rather than like an inverter, which allows the GTL inputs to switch quickly without needing to be driven rail to rail. GTL drivers were designed to pull a 1.2-V signal down to 0.4 V when switched on. This, however, placed the reference voltage for the input comparator at 0.8 V, which made it susceptible to ground-bounce noise. A variant of GTL, called GTL+, is being used to address this noise-margin concern. The GTL+ termination voltage is raised to 1.5 V, with the driver pulling down to a V_{OL} of 0.5 V. This moved the reference voltage to 1 V and out of the range of most ground bounces.

TI GTL devices operate at, and are specified for, both GTL and the improved-noise-margin GTL+ standard. However, the 'GTL16612A devices deviate from this history. They are designed with slow rising and falling edges, to offer significant system frequency improvement in heavily loaded backplanes. They are AC specified only at GTL+ because most applications are moving to this improved-noise-margin standard; they operate at either GTL or GTL+.

Devices named GTL or GTLP indicate reduced voltage-swing operation at a V_{TT} of 1.2 V (GTL standard) or 1.5 V (improved-noise-margin GTL+ standard). Fast-edge GTL devices are best for point-to-point or lower-frequency backplanes. Slow-edge GTL devices extend backplane operations to cover even higher frequencies.

Input Characteristics

The input characteristics are identical on both A and B ports. Both ports are very high impedance and have an input diode to provide protection against high negative-voltage spikes. The input diode conducts and prevents more sensitive components from being destroyed as the result of electrostatic discharges or line reflections.

GTL Output Characteristics

The principle of the GTL bus is based on open-drain drivers, as shown in Figure 3.

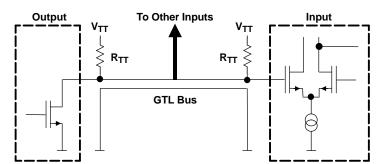


Figure 3. GTL Bus: An Open-Drain Bus

The devices actively drive the bus low, whereas, the termination voltage source (V_{TT}) pulls it high. Only the pullup resistor (R_{TT}), which usually is of a low resistance, limits the current. The pullup resistor value should match the fully loaded backplane impedance, not the trace impedance, to provide an optimum termination of the bus and avoid line reflections. The resistance of the GTL output is in the range of a few ohms. However, in the high state, the output transistor is in the high-impedance state. R_{TT} needs to be greater than 25 Ω at GTL+ signal levels, not to exceed the 'GTL16612A absolute maximum output current of 80 mA, and should be greater than 50 Ω at GTL+ signal levels, not to exceed the recommended output current limit of 34 mA.

APPLICATION INFORMATION

OEC

The 'GTL16612A GTL output consists of an improved edge-control circuit that provides optimized rise and fall times, typically 2.6 ns (20% to 80%), for backplanes under various loading conditions.

Using the definition of slew rate $\Delta t/\Delta v = t_r$ or $t_f/(V_{OH} - V_{OL})$, the slew rate of the device typically is 5 ns/V. As a comparison, these values are significantly more than those of previous GTL or standard TTL devices, which are usually about 1 ns/V, or less.

Termination Voltage, V_{TT}

The termination voltage (V_{TT}) should be derived from a voltage regulator that can provide up to 50-mA current per signal line. There are various voltage regulators that meet these requirements. Depending on the application, the regulators should be mounted either directly on the backplane or on the daughter boards. It is highly recommended that ceramic bypass capacitors be used (due to high impedance) at the termination resistors because several signal lines may be switching simultaneously, causing considerable current fluctuations at the termination voltage.

Reference Voltage, V_{REF}

The GTL reference voltage (V_{REF}) can be derived using a simple voltage divider between V_{TT} and GND with an R-to-2R ratio and a bypass capacitor (0.01–0.1 μ F) as close to the V_{REF} terminal as possible (see Figure 4). Generating V_{REF} from V_{TT} ensures the maximum possible signal-to-noise ratio (SNR) even with an unstable termination voltage. It also is recommended to generate V_{REF} locally on each plug-in card, instead of on the backplane.

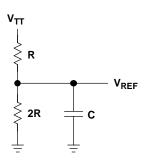


Figure 4. Suggested Connection of V_{REF} Terminal

Partial Power Down

Device power can be switched off without having to remove the device from the system. This is a partial power down. 'GTL16612A can be used in a partial-power-down application where $V_{CC}=0$ because the inputs and outputs are at high impedance and are able to tolerate active bus signals. This is reflected in the I_{off} parameter, which specifies the maximum input or output leakage current.

Bus-Hold Circuit

Bus hold on A-port inputs (LVTTL side) prevents any unused or floating inputs from damaging the device. To change the logic state stored by the bus-hold circuit, a current of about 250-300 μ A must be overridden. There is no bus hold on the B port (GTL side). A bus-hold circuit on the GTL side would defeat the purpose of the open-drain outputs, which take on the high-impedance state to allow the bus to achieve a logic high state via the pullup resistors.

SCES187D-JANUARY 1999-REVISED JULY 2005

APPLICATION INFORMATION

Source-Synchronous Clock Applications

When the clock originates at the driver card and is carried out with the data, the backplane maximum frequency can be achieved. This is possible because the backplane flight time no longer is the limiting factor.

Figure 5 shows results of the 'GTL16612A operating at 100 MHz in a source-synchronous mode.

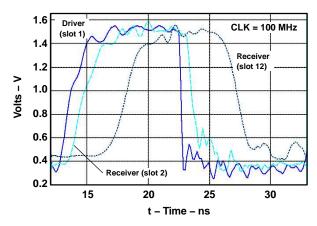


Figure 5. Source-Synchronous Clock

Summary

'GTL16612A devices provide significant benefits when designing high-speed parallel backplanes.

- B port specifically optimized for distributed backplane levels
- Improved B-port GTL edge-control circuitry provides better signal integrity at higher frequencies.
- Reduced power consumption over BTL technology
- Similar to 'LVTH16601, with the B port operating at GTL+ signal levels
- Data throughput is 1.35 Gbit/s at 75-MHz clock speed.
- Provide about two times the data throughput over existing TTL devices, using existing parallel backplane designs

Additional information on GTL devices and backplane design considerations can be found at http://www.ti.com/sc/gtl.

www.ti.com 20-Jul-2011

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
SN74GTL16612ADGGR	OBSOLETE	TSSOP	DGG	56		TBD	Call TI	Call TI	
SN74GTL16612ADL	OBSOLETE	SSOP	DL	56		TBD	Call TI	Call TI	
SN74GTL16612ADLR	OBSOLETE	SSOP	DL	56		TBD	Call TI	Call TI	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

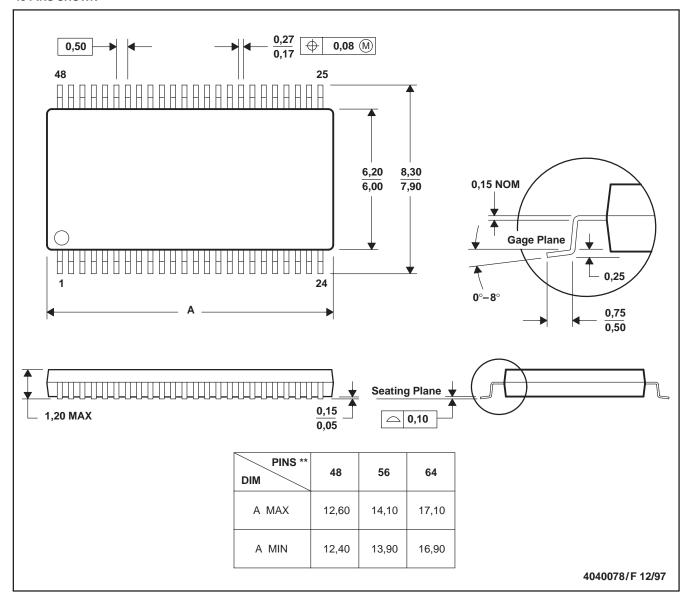
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

e2e.ti.com