

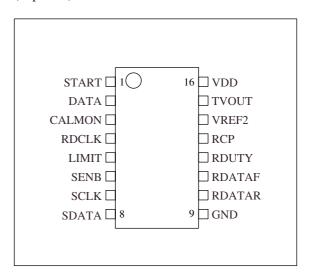
OVERVIEW

The SM8750AV is a data jitter measurement CMOS LSI that can be used to determine test signal jitter for adaptive-control recording DVD-RAM devices. It measures the phase difference between the data signal and clock and converts the phase difference to a voltage output. A sufficient sum of phase difference data, according to the system, can then be read into a CPU and analyzed to determine the amount of jitter.

FEATURES

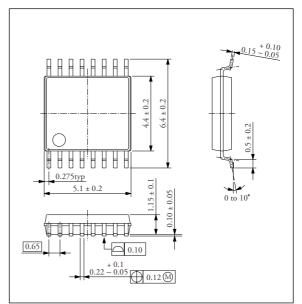
- RDCLK and DATA signal phase difference to voltage converter (75mV/ns (typ) coefficient)
- RDCLK duty auto-adjust function (rising edge reference)
- DATA signal delay auto-adjust function (independently adjusted on rising and falling edges)
- Offset auto-calibration function
- 3-wire serial interface mode control
- Sleep function
- Single 5V supply
- 16-pin VSOP

APPLICATIONS

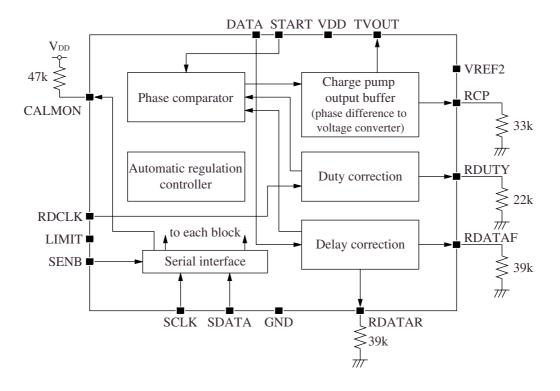

- Optical disc equipment
 - CD-R
 - CD-RW
 - DVD-RAM
 - Others
- Control/governing equipment

ORDERING INFORMATION

Device	Package
SM8750AV	16-pin VSOP


PINOUT

(Top view)



PACKAGE DIMENSIONS

(Unit: mm)

BLOCK DIAGRAM

PIN DESCRIPTION

Number	Name	I/O	Description
1	START	ı	Measurement start control. Phase difference to voltage conversion starts on the falling edge.
2	DATA	ı	Two-valued signal input
3	CALMON	0	Internal calibration state signal monitor output. N-channel open drain. Active when calibrated.
4	RDCLK	ı	PLL clock input
5	LIMIT	1	TVOUT output voltage-limit control voltage input
6	SENB	ı	Serial interface: enable signal input
7	SCLK	ı	Serial interface: clock signal input
8	SDATA	I/O	Serial interface: data signal input/acknowledge signal output. N-channel open drain.
9	GND	_	Ground
10	RDATAR	0	DATA rising edge: delay adjust circuit reference-current setting resistor connection
11	RDATAF	0	DATA falling edge: delay adjust circuit reference-current setting resistor connection
12	RDUTY	0	RDCLK duty adjust circuit reference-current setting resistor connection
13	RCP	0	Phase difference to voltage converter coefficient reference-current setting resistor connection
14	VREF2	ı	2V reference voltage input
15	TVOUT	0	Phase difference to voltage converter output
16	VDD	_	5V supply

SPECIFICATIONS

Absolute Maximum Ratings

GND = 0V

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{DD}	-0.5 to 7.0	V
Input voltage range	V _{IN}	-0.5 to V _{DD} + 0.5	V
Storage temperature range	T _{stg}	-40 to 125	°C
Power dissipation	P _D	250	mW

Recommended Operating Conditions

GND = 0V

Parameter	Symbol	Rating	Unit
Supply voltage (specifications guaranteed)	V _{DD}	4.75 to 5.25	٧
Supply voltage (operation guaranteed)	V _{DD}	4.5 to 5.5	٧
Reference voltage input	V _{REF2}	1.89 to 2.11	٧
Operating temperature range	T _{opr}	0 to 70	°C

DC Electrical Characteristics

 $V_{DD} = 5V \pm 5\%$, GND = 0V, $T_a = 0$ to 70°C unless otherwise noted.

Parameter	Cumbal	Condition		Unit			
Parameter	Symbol	Condition	min	typ	max	Oille	
Current consumption 1	I _{DD1}	Normal operating mode	-	9.0	13.0	mA	
Current consumption ¹	I _{DD2}	Sleep mode	-	0.5	0.7	IIIA	
HIGH-level logic input voltage ²	V _{IH}		2.4	-	-	V	
LOW-level logic input voltage ²	V _{IL}		-	-	0.6	V	
HIGH-level logic input current ²	I _{IH}	$V_{IN} = V_{DD}$	-	-	3	μΑ	
LOW-level logic input current ²	I _{IL}	V _{IN} = GND	-3	-	-	μΑ	
SDATA, CALMON logic output voltage	V _{OL}	I _{OL} = 10mA	-	-	1.0	V	
VREF2 input current	I _{REF}	VRFE2 = 2V	-	50	100	μΑ	

^{1.} $39k\Omega$ resistor connected between RDATAR and GND $39k\Omega$ resistor connected between RDATAF and GND $22k\Omega$ resistor connected between RDUTY and GND $33k\Omega$ resistor connected between RCP and GND 60MHz RDCLK input frequency 7.5MHz DATA input frequency 200kHz START input frequency 0ns DATA and RDCLK phase difference Serial interface not operating.

2. Pins START, DATA, RDCLK, SENB, SCLK, SDATA.

Phase Difference to Voltage Converter Characteristics

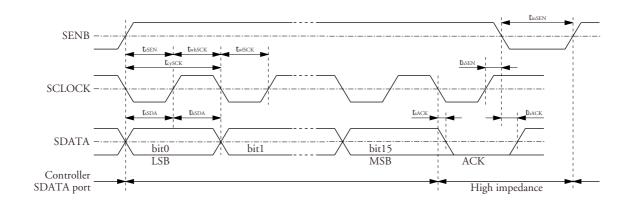
 V_{DD} = 5V ± 5%, GND = 0V, T_a = 0 to 70°C unless otherwise noted.

Parameter	Condition		Unit		
Parameter	Condition	min	typ	max	Unit
DDCI // input fraguency	FCG = LOW	-	58.38	70	MHz
RDCLK input frequency	FCG = HIGH	-	29.19	35	IVITZ
Phase difference to voltage converter coefficient 1	Normal operation, FCG = LOW	50	75	100	mV/ns
Phase difference to voltage converter coefficient 2	Converter coefficient measurement mode, FCG = LOW	25	37.5	50	mV/ns
	Normal operation, FCG = HIGH	25	37.5	50	
Phase difference to voltage converter coefficient 3	Converter coefficient measurement mode, FCG = HIGH	12.5	18.75	25	mV/ns
Converter coefficient relative accuracy	See note. ¹	-	-	±5	%
Converter coefficient relative accuracy	See note. ²	-	-	±5	%
Output offset voltage	After VREF2 reference calibration	-	-	±25	mV
Converter voltage settling time	Time from measurement object DATA edge to final set value ± 0.5%	-	_	0.75	μs
Converter voltage reset time	Time from START signal rising edge to final reset value ± 1mV	-	-	3	μs
Output load regulation	I _L = 0.5mA	-	-	20	mV
HIGH-level output voltage range	LIMIT pin voltage reference	+0.15	-	+0.45	V
LOW-level output voltage range		-	-	0.8	V
Output voltage droop		-	-	1	mV/μs
START-DATA setup time ³	START signal rising edge to DATA signal edge	1T	-	-	ns

Auto-adjust Characteristics

 V_{DD} = 5V ± 5%, GND = 0V, T_a = 0 to 70°C unless otherwise noted.

Parameter	Condition		Rating			
rarameter	Condition	min	typ	max	- Unit	
Maximum DATA edge delay adjust range		-	29	-	ns	
Minimum DATA edge delay adjust range		-	12.5	-	ns	
Maximum RDCLK pulsewidth adjust range	FOC LOW	-	15	-	ns	
Minimum RDCLK pulsewidth adjust range	FCG = LOW	-	3	-	ns	
Maximum RDCLK pulsewidth adjust range	FOO HIGH	-	28	_	ns	
Minimum RDCLK pulsewidth adjust range	- FCG = HIGH	-	4	-	ns	
Auto-adjustment time	After CS = HIGH, until settling	-	5	8	ms	
RCP voltage	Converter coefficients set	-	1	-	V	
HIGH-level RDATAR/RDATAF voltage	Minimum DATA delay	-	1.92	-	V	
LOW-level RDATAR/RDATAF voltage	Maximum DATA delay	-	0.69	-	V	
HIGH-level RDUTY voltage	Minimum RDCLK pulsewidth	-	1.88	_	V	
LOW-level RDUTY voltage	Maximum RDCLK pulsewidth	-	0.24	_	V	


^{1. {[(}converter coefficient 2) \times 2 / (converter coefficient 1)] - 1} \times 100 2. {[(converter coefficient 3) \times 2 / (converter coefficient 2)] - 1} \times 100 3. T = RDCLK cycle time

Serial Interface Characteristics

 V_{DD} = 5V ± 5%, GND = 0V, T_a = 0 to 70°C unless otherwise noted.

Parameter	Symbol		Unit		
raidilletei	Symbol	min	typ	max	Oilit
SCLK pulse cycle time	t _{cySCK}	100	-	-	ns
SCLK HIGH-level pulsewidth	t _{whSCK}	40	-	-	ns
SCLK LOW-level pulsewidth	t _{wISCK}	40	-	-	ns
SENB setup time	t _{sSEN}	20	_	-	ns
SENB hold time	t _{hSEN}	40	-	-	ns
SDATA setup time	t _{sSDA}	15	-	-	ns
SDATA hold time	t _{hSDA}	15	_	-	ns
ACK setup time ¹	t _{sACK}	0	-	20	ns
ACK hold time ¹	t _{hACK}	-	-	50	ns
SENB interval	t _{inSEN}	100	-	_	ns

^{1.} SDATA output signal (ACK) acknowledge output (N-channel open drain), receive data is valid, LOW-level output, 15pF SDATA load capacitance.

FUNCTIONAL DESCRIPTION

Serial Interface

The SM8750AV has a dedicated serial interface port over which data can be written and the various operating modes can be controlled. The port address and bit configuration are shown in table 1, and the data bits are described in table 2.

Table 1. Port address and bit configuration

	Bit number														
15 (msb)	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0 (Isb)
Data						•	Add	ress	•						
TEST1	TEST0	CSDIS	CS	SP	POLAR	GMES	FCG	×	LOW	HIGH	HIGH	HIGH	HIGH	HIGH	×

×: Don't care.

Table 2. Data bit description

Bit	Description	Default			
TEST[1:0]	Test mode setting	LOW:LOW	(normal operation)		
CSDIS	Auto-adjust disable	LOW	(enabled)		
CS	Auto-adjust start	LOW	(wait)		
SP	Sleep mode settings	LOW	(normal operation)		
POLAR	DATA edge settings for phase measurement Polarity setting for converter coefficient measurement	LOW	(falling edge) (1T discharge)		
GMES	Converter coefficient measurement mode setting	LOW	(normal operation)		
FCG	RDCLK pulsewidth auto-adjust mode Phase difference to voltage converter coefficient switching	LOW	(minimum pulsewidth) (maximum converter coefficient)		

Table 3. GMES and POLAR operating modes

GMES	POLAR	Operating mode
LOW	LOW	DATA signal falling edge and RDCLK rising edge phase difference conversion
LOW	HIGH	DATA signal rising edge and RDCLK rising edge phase difference conversion
HIGH	LOW	Output converter voltage for phase difference equivalent to $-0.5T$
HIGH	HIGH	Output converter voltage for phase difference equivalent to +0.5T

Serial data comprising 16 bits is input with the LSB first. Valid data is read in on the 16th rising edge of the SCLK input. On the next SCLK falling edge, the SDATA N-channel open drain is turned ON and SDATA goes LOW, performing the function of an acknowledge signal.

If 15 or less SCLK rising edge pulses occur during the interval when SENB is HIGH, the data received

up to the point when SENB goes LOW is ignored and the internal port data is not updated. If 17 or more SCLK rising edge pulses occur, the received data is latched in the internal port on the 16th rising edge and the acknowledge signal is output on the next falling edge. The acknowledge signal is held constant until SENB goes LOW again.

Phase Difference to Voltage Converter

The phase difference to voltage converter circuit takes the converts the phase difference between the RDCLK rising edge and the DATA signal to a voltage. When START goes LOW, the phase difference between the first active DATA signal edge, where the active edge polarity is determined by the serial interface bit POLAR, and the next RDCLK rising edge is converted to a voltage signal. The converted voltage signal is output on TVOUT while START is LOW,

and is reset to the VREF2 reference level when START goes HIGH again.

The START signal must go LOW for a minimum interval of 1 RDCLK cycle before any DATA signal edge to be converted, regardless of the number of DATA signal edges. If the START interval is shorter than 1 cycle, there is a possibility that the next edge might be misinterpreted as the conversion object.

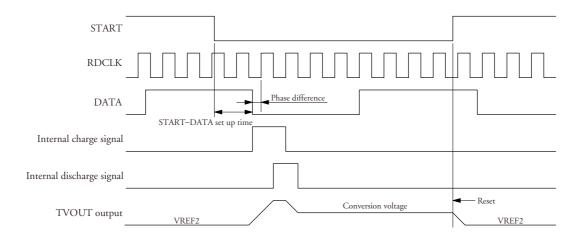


Figure 1. Converter operation timing (POLAR = LOW, DATA leading phase)

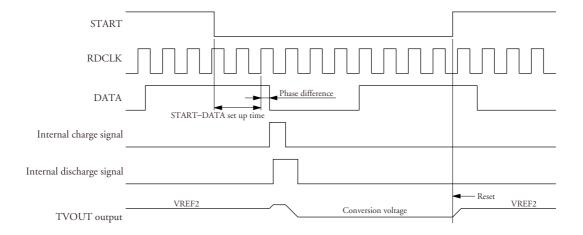


Figure 2. Converter operation timing (POLAR = LOW, DATA lagging phase)

Converter Coefficient Measurement Mode

When the serial interface bit GMES is set HIGH, converter coefficient measurement mode is invoked. In this mode, a voltage equivalent to a phase difference of ± 0.5 T, determined by the POLAR input bit, is output on TVOUT. Internally, the difference in

pulsewidth between the charge/discharge signals is ± 1 T, where the charge pump circuit capacitance is double the capacitance during normal operation in order to generate outputs equivalent to phase differences of ± 0.5 T.

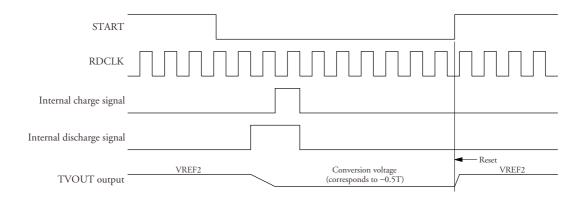


Figure 3. Converter coefficient measurement mode timing (POLAR = LOW)

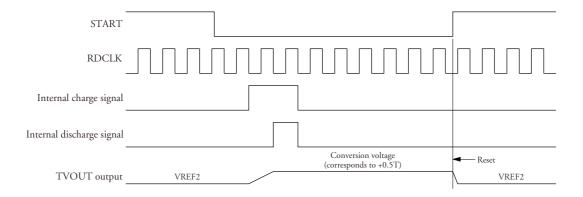


Figure 4. Converter coefficient measurement mode timing (POLAR = HIGH)

Auto-adjust Function

When the serial interface bit CS is set HIGH, the auto-adjust function starts and operates on the objects in the sequence described below. In the auto-adjust sequence cycle, the RDCLK pulsewidth and DATA delay are set to approximately the center of the adjustment range.

Charge pump circuit and output buffer offset cancellation

An identical 0.5T signal is added to the charge/discharge signals and the output on TVOUT is calibrated to an output voltage of VREF2.

2. RDCLK pulsewidth

Signals equivalent to the RDCLK HIGH-level pulsewidth and LOW-level pulsewidth are added to the internal charge/discharge signals, and the RDCLK pulsewidths are adjusted to recover a TVOUT output voltage of VREF2.

3. DATA rising edge delay

The phase difference between the RDCLK rising edge and DATA rising edge is converted to a voltage, and the RDCLK rising edge delay is adjusted to recover a TVOUT output voltage of VREF2.

Sleep Mode

When the serial interface bit SP is set HIGH, sleep mode is invoked. In this mode, all circuits other than the power-ON detection circuit and serial interface circuit are shutdown to reduce current consumption.

Power-ON Reset

When power is switched ON, a built-in power-ON reset circuit sets all serial interface bit settings to LOW (factory preset default), and the auto-adjust

Test Mode

When the serial interface bit TEST1 or TEST0 is set HIGH, a test mode is invoked. In these modes, the phase comparator input signals and internal

4. DATA falling edge delay

The phase difference between the RDCLK rising edge and DATA falling edge is converted to a voltage, and the RDCLK rising edge delay is adjusted to recover a TVOUT output voltage of VREF2.

The CALMON calibration monitor output is high impedance during the auto-adjust sequence interval. When auto-adjustment is completed, the CALMON N-channel open drain turns ON and CALMON goes LOW, and the CS bit is cleared to LOW.

When the serial interface bit CSDIS is set HIGH, the auto-adjustment result is disabled, and the external inputs on RDCLK and DATA are input to the phase comparator without adjustment. If CS and CSDIS are both simultaneously set HIGH, the auto-adjust sequence still takes place but that the result is disabled as soon as the sequence is completed.

When power is switched ON, the auto-adjust sequence is enabled, and the adjusted values are approximately in the center of the corresponding adjustment range.

When operation transfers from sleep mode to normal operating mode, the auto-adjust settings from the most recent auto-adjust cycle are restored.

circuit settings are set to the middle of the corresponding adjustment range.

charge/discharge signals are output on CALMON and TVOUT.

Table 4. Test modes	3
---------------------	---

TEST1	TEST0	CALMON	TVOUT
LOW	LOW	Normal operation	Normal operation
LOW	HIGH	Internal charge signal	Internal discharge signal
HIGH	LOW	Phase comparator RDCLK signal	Phase comparator DATA signal

Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from NIPPON PRECISION CIRCUITS INC. (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

NIPPON PRECISION CIRCUITS INC.

4-3, Fukuzumi 2-chome, Koto-ku, Tokyo 135-8430, Japan Telephone: +81-3-3642-6661 Facsimile: +81-3-3642-6698 http://www.npc.co.jp/ Email: sales@npc.co.jp

NC9916BE 2002.11