

OVERVIEW

The SM5841H is an 8-times oversampling (interpolation) digital filter for digital audio reproduction equipment. It accepts 16 or 18-bit input data, and outputs data in 16, 18 or 20-bit format, making a wide range of interfaces possible. It also features digital deemphasis for 3 sampling frequencies, a noise shaper to reduce quantization noise, a DC offset output and other circuits.

FEATURES

PINOUT

(Top view)

Functions

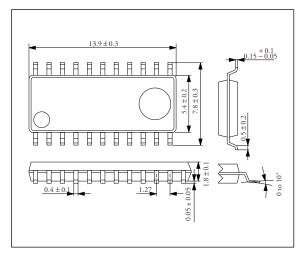
- 2-channel processing
- 8-times (8fs) oversampling (interpolation)
- Digital deemphasis (fs = 48/44.1/32 kHz)
- Serial input data 2s complement, MSB first, 16/18-bit
- Serial output data
 2s complement, MSB first, 16/18/20-bit
- 1st-order noise shaper (for 16/18-bit output only)
- 256fs/384fs system clock selectable
- Output data DC offset (approximately 0.8%) ON/OFF control
- TTL-compatible input/outputs
- 5 V (standard) supply
- 3.2 V operating voltage
- Molybdenum-gate CMOS

Filter Characteristics

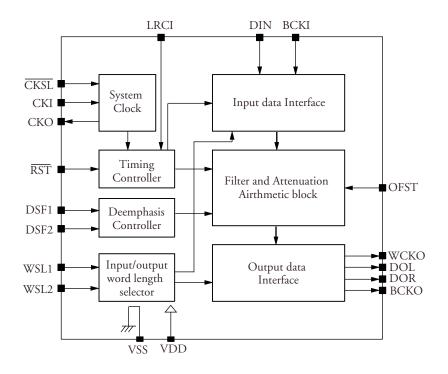
- 3-stage DC FIR interpolation filter
 1st stage (fs → 2fs), 69-tap
 2nd stage (2fs → 4fs), 13-tap
 3rd stage (4fs → 8fs), 9-tap
- IIR deemphasis filter for gain and phase characteristics close to those of analog filters
- Overflow limiter built-in

APPLICATIONS

- Digital amplifiers
- CD players
- DAT players
- DBS systems
- PCM systems


ORDERING INFORMATION

Device	Package
SM5841HS	22pin SOP


WSL1 1	\bigcirc	22 DIN
СКІ 2	0	21 BCKI
CKSL 3		20 LRCI
CKO 4		19 OFST
vss 5		18 NC
NC 6		17 NC
NC 7		16 VDD
WSL2 8		15 WCKO
DSF1 9		14 DOL
DSF2 10		13 DOR
RST 11		12 вско

PACKAGE DIMENSIONS

(Unit: mm)

BLOCK DIAGRAM

PIN DESCRIPTION

Number	Name	I/O ¹		Description							
			Input/output data	Input/output data select pins							
1	WSL1	lp	WSL1	WSL2	Noise shape	er Input bit lengt	Output bit length				
			HIGH	HIGH	Off	18 bits	20 bits				
			HIGH	LOW	On	18 bits	18 bits				
8	WSL2	lp	LOW	HIGH	On	16 bits	18 bits				
			LOW	LOW	On	16 bits	16 bits				
2	СКІ	lp	System clock input	t							
3	CKSL	lp	System clock sele	ct input. 384fs w	hen HIGH, and 2	56fs when LOW.					
4	СКО	0	System clock outp	out. The CKI is fire	st buffered before	e output on CKO.					
5	VSS	-	Ground								
6	NC	-	No connection								
7	NC	-	No connection								
			Deemphasis selec	ct inputs							
9	DSF1	lp	DSF1		DSF2	Deemphasis	Sampling frequency				
			LOW		LOW	On	44.1 kHz				
			LOW		HIGH	On	48.0 kHz				
10	DSF2	lp	HIGH		LOW	Off	-				
			HIGH		HIGH	On	32.0 kHz				
11	RST	lp	System reset. Res	et and initializati	on when RST is	LOW.					
12	ВСКО	0	Output bit clock								
13	DOR	0	Right-channel 8fs	data output							
14	DOL	0	Left-channel 8fs d	ata output							
15	WCKO	0	Output word clock								
16	VDD	-	5 V supply								
17	NC	-	No connection								
18	NC	-	No connection								
19	OFST	lp	Output data DC of	ffset select input.	Summing ON w	hen HIGH, and OFF wh	en LOW.				
20	LRCI	lp	Input data sample	Input data sample rate (fs) clock							
21	BCKI	lp	Input bit clock								
22	DIN	lp	Input data								

1. Ip = Input with pull-up resistor

SPECIFICATIONS

Absolute Maximum Ratings

 $V_{SS} = 0 V$

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{DD}	-0.3 to 7.0	V
Input voltage range	V _{IN}	-0.3 to V _{DD} + 0.3	V
Storage temperature range	T _{stg}	-40 to 125	deg. C
Power dissipation	PD	250	mW
Soldering temperature	T _{sld}	255	deg. C
Soldering time	t _{sld}	10	S

Recommended Operating Conditions

 $V_{SS} = 0 V$

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{DD}	3.2 to 5.5	V
Operating temperature range	T _{opr}	-20 to 80	deg. C

DC Electrical Characteristics

Standard voltage: V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V, T_a = -20 to 80 °C

Parameter	Symbol	Condition		Rating			
	Symbol	Condition	min	typ	max	Unit	
Current consumption	I _{DD}	V _{DD} = 5.0 V ¹	-	-	40	mA	
HIGH-level input voltage ²	V _{IH1}		0.7V _{DD}	-	-	V	
LOW-level input voltage ²	V _{IL1}		-	-	0.3V _{DD}	V	
CKI AC-coupled input voltage	V _{INAC}	Sine wave input	0.3V _{DD}	-	-	V _{p-p}	
HIGH-level input voltage ³	V _{IH2}		2.4	-	-	V	
LOW-level input voltage ³	V _{IL2}		-	-	0.5	V	
HIGH-level output voltage ⁴	V _{OH}	I _{OH} = -0.4 mA	2.5	-	-	V	
LOW-level output voltage ⁴	V _{OL}	I _{OL} = 1.6 mA	-	-	0.4	V	
CKI HIGH-level input current	I _{IH1}	V _{IN} = V _{DD}	-	10	20	μA	
CKI LOW-level input current	I _{IL1}	V _{IN} = 0 V	-	10	20	μA	
LOW-level input current ³	I _{IL2}	V _{IN} = 0 V	-	10	20	μA	
Input leakage current ^{2, 3}	ILH	V _{IN} = V _{DD}	-	-	1.0	μA	
Input leakage current ²	ILL	V _{IN} = 0 V	-	-	1.0	μA	

1. $f_{SYS} = 384fs = 20$ MHz, no output load 2. Pins CKSL, OFST

3. Pins LRCI, DIN, BCKI, DSF1, DSF2, WSL1, WSL2, RST

4. Pins CKO, DOL, DOR, BCKO, WCKO

Low voltage: V_{DD} = 3.2 to 4.5 V, V_{SS} = 0 V, T_a = -20 to 80 °C Rating Condition Parameter Symbol min typ max $V_{DD} = 3.4 \ V^1$ Current consumption I_{DD} _ _ 20 HIGH-level input voltage² V_{IH1} $0.7V_{DD}$ _ _ LOW-level input voltage² V_{IL1} _ $0.3V_{\rm DD}$ _ CKI AC-coupled input voltage VINAC Sine wave input $0.3V_{DD}$ _ _ HIGH-level input voltage³ V_{IH2} 2.4 _ _ LOW-level input voltage³ V_{IL2} 0.5 _ _ I_{OH} = -0.2 mA HIGH-level output voltage⁴ 2.5 V_{OH} --LOW-level output voltage⁴ V_{OL} $I_{OL} = 0.8 \text{ mA}$ _ _ 0.4 CKI HIGH-level input current $V_{IN} = V_{DD}$ _ _ 12 I_{H1} CKI LOW-level input current $V_{IN} = 0 V$ 12 $I_{\rm IL1}$ --LOW-level input current³ $V_{IN} = 0 V$ _ _ 12 I_{IL2} Input leakage current^{2, 3} I_{LH} $V_{IN} = V_{DD}$ _ _ 1.0 Input leakage current² $V_{IN} = 0 V$ 1.0 I_{LL} _ _

1. $f_{SYS} = 384 fs = 18.5 \text{ MHz}$, no output load 2. Pins CKSL, OFST

3. Pins LRCI, DIN, BCKI, DSF1, DSF2, WSL1, WSL2, RST

4. Pins CKO, DOL, DOR, BCKO, WCKO

Unit

mΑ ۷

٧

V_{p-p} ۷

۷

٧

۷

μA

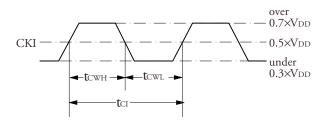
μA

μA

μA

uА

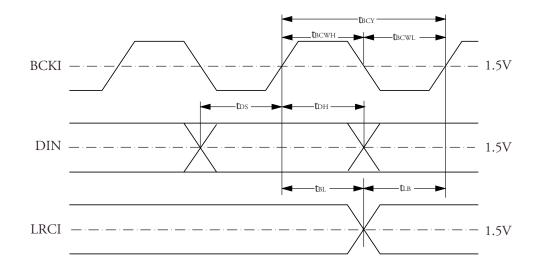
AC Electrical Characteristics


Clock (CKI)

Standard voltage: V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V, T_a = -20 to 80 °C

Parameter		Condition		Rating			
	Symbol	CKSL	System clock	min	typ	max	Unit
HIGH-level clock pulsewidth	+	HIGH	384fs	23	-	250	20
	t _{CMH}	LOW	256fs	35	-	500	ns
LOW-level clock pulsewidth	t _{CWL}	HIGH	384fs	23	-	250	20
		LOW	256fs	35	-	500	ns
Clock pulse cycle	t _{CI}	HIGH	384fs	50	-	500	20
		LOW	256fs	76	-	1000	- ns

Low voltage: V_{DD} = 3.2 to 4.5 V, V_{SS} = 0 V, T_a = -20 to 80 °C


Parameter		Condition					
	Symbol	CKSL	System clock	min	typ	max	Unit
HIGH-level clock pulsewidth	+	HIGH	384fs	25	-	250	20
	t _{CMH}	LOW	256fs	50	-	500	ns
LOW-level clock pulsewidth	t _{CWL}	HIGH	384fs	25	-	250	20
		LOW	256fs	50	-	500	ns
	t _{CI}	HIGH	384fs	54	-	500	nc
Clock pulse cycle		LOW	256fs	108	-	1000	– ns

Serial input timing (BCKI, DI, LRCI)

 V_{DD} = 3.2 to 5.5 V, V_{SS} = 0 V, T_a = –20 to 80 $^\circ C$

Parameter	Symbol		Unit		
Falameter	Symbol	min	typ	max	Unit
BCKI HIGH-level pulsewidth	t _{всwн}	50	-	-	ns
BCKI LOW-level pulsewidth	t _{BCWL}	50	-	-	ns
BCKI pulse cycle	tBCY	100	-	-	ns
DIN setup time	t _{DS}	50	-	-	ns
DIN hold time	t _{DH}	50	-	-	ns
Last BCKI rising edge to LRCI edge	t _{BL}	50	-	-	ns
LRCI edge to first BCKI rising edge	t _{LB}	50	-	-	ns

Reset timing (RST)

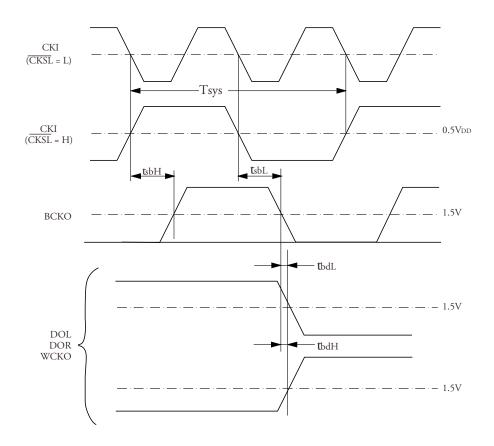
 V_{DD} = 3.2 to 5.5 V, V_{SS} = 0 V, T_a = –20 to 80 $^\circ C$

Parameter	Symbol Condition			Unit		
	Symbol	Condition	min	typ	max	Unit
RST LOW-level reset pulsewidth	+	At power-ON	1	-	-	μs
	^I RST	At all other times	50	-	-	ns

Control inputs (DSF1, DSF2)

 V_{DD} = 3.2 to 5.5 V, V_{SS} = 0 V, T_a = –20 to 80 $^\circ C$

Parameter	Symbol Condition		Rating			Unit	
	Symbol	Condition	min	typ	max	Onit	
Rise time	t _r	10 to 90% level	-	-	100	ns	
Fall time	t _f	90 to 10% level	-	-	100	ns	

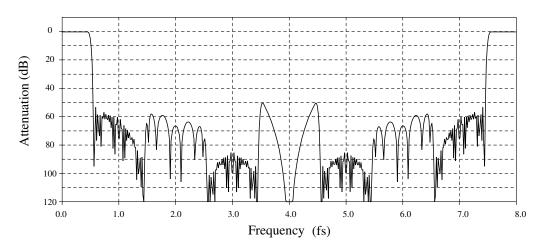

Output timing

Standard voltage: V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V, T_a = -20 to 80 °C, C_L = 15 pF

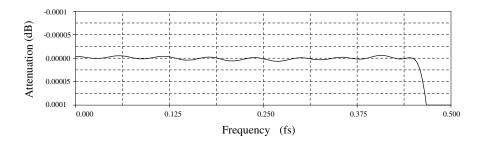
Parameter	Symbol	Condition		Unit		
	Symbol	Condition	min	typ	max	Unit
CKI to CKO delay	t _{ско}	CKI fall to CKO fall	-	-	30	ns
CKI to BCKO delay	t _{sbH}	CKI fall to BCKO rise	10	-	60	20
	t _{sbL}	CKI fall to BCKO fall	10	-	60	ns
BCKO to DOL, DOR, WCKO delay	t _{bdH}	BCKO fall to output rise	0	-	20	20
BORD 10 DOL, DON, WORD delay	t _{bdL}	BCKO fall to output fall	0	-	20	ns
	t _{rdH}	RST fall to output fall	-	-	40	20
RST to DOL, DOR delay	t _{rdL}	RST rise to output rise	-	-	40	ns

Low voltage: V_{DD} = 3.2 to 4.5 V, V_{SS} = 0 V, T_a = -20 to 80 °C, C_L = 15 pF

Parameter	Symbol Condition	Condition	Rating			Unit	
Farameter		min	typ	max	Unit		
CKI to CKO delay	tско	t _{CKO} CKI fall to CKO fall		-	45	ns	
CKI to BCKO delay	t _{sbH}	CKI fall to BCKO rise	10	-	100	20	
	t _{sbL}	CKI fall to BCKO fall	10	-	100	ns	
BCKO to DOL, DOR, WCKO delay	t _{bdH}	BCKO fall to output rise	0	-	30	20	
	t _{bdL}	BCKO fall to output fall	0	-	30	ns	
RST to DOL, DOR delay	t _{rdH}	RST fall to output fall	-	-	60	20	
	t _{rdL}	RST rise to output rise	-	-	60	ns	



Filter Characteristics

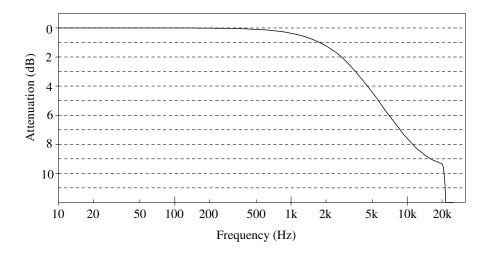

8-times interpolation filter

Parameter	Frequ	Rating (dB)			
Parameter	f	@ fs = 44.1 kHz	min	typ	max
Passband attenuation	0 to 0.4535fs	0 to 20 kHz	-	0.20	-
Passband ripple	0 10 0.455515		-0.03	-	+0.03
0.5465fs to 3.4535fs Stopband attenuation 3.4535fs to 4.5465fs 4.5465fs to 7.4535fs	24.1 to 152 kHz	53	-	-	
	3.4535fs to 4.5465fs	152 to 201 kHz	50	-	-
	4.5465fs to 7.4535fs	201 to 328 kHz	53	-	-

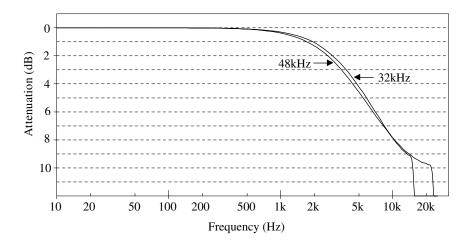
8fs filter response with deemphasis OFF

8fs filter passband response with deemphasis OFF

8fs filter band transition response with deemphasis OFF



Deemphasis filter


Parameter		Sampling frequency			
		32 kHz	44.1 kHz	48 kHz	
Passband bandwidth (kHz)		0 to 14.5	0 to 20.0	0 to 21.7	
Deviation from ideal characteristic ¹	Attenuation (dB)	-0.40 to +0.40	-0.05 to +0.15	-0.30 to +0.05	
	Phase, θ (°)	-2 to 19	-1 to 15	-1 to 14	

1. The maximum deviation from an ideal filter with 0 dB attenuation and 0° phase characteristics for a 1 kHz input signal.

Passband response with deemphasis ON (fs = 44.1 kHz)

Passband response with deemphasis ON (fs = 32/48 kHz)

FUNCTIONAL DESCRIPTION

The basic arithmetic block is shown in figure 1, and the function of each block is described in the following sections.

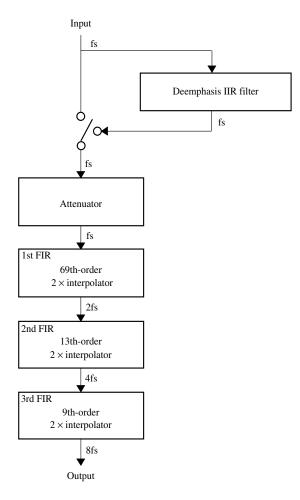


Figure 1. Arithmetic block diagram

8-times Oversampling (Interpolation)

The interpolation arithmetic block is comprised of 3 cascaded, 2-times FIR interpolation filters, as shown in figure 1.

The input signal is sampled at rate fs, and then 8times oversampling data is output. Sampling noise in the 0.5465fs to 7.4535fs stopband is removed by the interpolation filter.

Digital Deemphasis (DSF1, DSF2)

The digital deemphasis filter has the same construction as analog filters. It is implemented as an IIR filter to faithfully reproduce the gain and phase characteristics of standard analog deemphasis filters. The filter coefficients for fs = 32.0/44.1/48.0 kHz sampling frequency are selected by DSF1 and DSF2 when the sampling frequency is specified, as shown in the following table.

DSF1	DSF2	Deemphasis	Sampling frequency
LOW	LOW	On	44.1 kHz
LOW	HIGH	On	48.0 kHz
HIGH	LOW	Off	-
HIGH	HIGH	On	32.0 kHz

System Clock (CKI, CKO, CKSL)

Two system clock frequencies, 384fs and 256fs, can be used. The clock is input on CKI. The CKI input inverter has a feedback resistor to allow AC-coupled input clocks. The system clock is also buffered and then output on CKO. The system clock frequency selection and the internal clock frequency are shown in the following table.

Parameter	CKSL		
Falameter	HIGH LOW		
CKI input system clock frequency (f_{SYS})	384fs	256fs	
CKO clock frequency	384fs	256fs	
Internal clock frequency	128fs	128fs	
Serial output clock frequency	192fs	256fs	

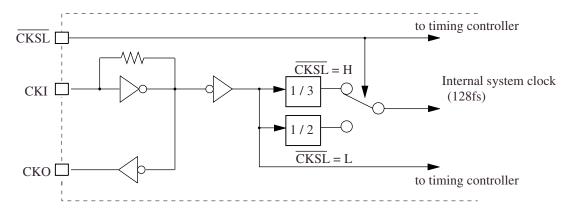


Figure 2. Clock generator circuit

Noise Shaper and I/O Data Length (WSL1, WSL2)

The SM5841H has functions that can be used to suppress the level of requantization noise due to the inherent arithmetic rounding-off that occurs in digital signal processing.

■ 16/18-bit input

The input interface accepts 16 and 18-bit input source data. That means that if 16-bit source data is digitally processed, for example in a sound field control or other DSP, the output can be input to the SM5841H without the same need for rounding-off, thereby avoiding the requantization noise that would otherwise occur.

16/18/20-bit output

The output interface can support 18 and 20-bit output data, making connection to 18 or 20-bit D/A converters possible. As a result, the requantization noise generated after digital processing can be greatly reduced.

Noise shaper function

The 1st-order noise shaper processing occurs on the digital filter output. It reduces the requantization noise for 16 and 18-bit input signals to levels inherent in 18 and 20-bit output modes, respectively. The noise shaper does no processing on 20bit output data.

There are 4 input data and output data length combinations possible, selected by the state of WSL1 and WSL2 as shown in the following table.

WSL1	WSL2	Noise shaper	Input bit length	Output bit length
HIGH	HIGH	Off	18 bits	20 bits
HIGH	LOW	On	18 bits	18 bits
LOW	HIGH	On	16 bits	18 bits
LOW	LOW	On	16 bits	16 bits

Audio Data Input (DIN, BCKI, LRCI)

The input data is in 16/18-bit serial, 2s complement, MSB first format.

Serial input data on DIN is clocked into an SIPO (serial in, parallel out) register on the rising edge of the BCKI bit clock, and then converted to parallel data.

SIPO output data is transferred into the left and right-channel input registers on the falling edge and rising edge, respectively, of the LRCI clock.

The internal arithmetic operation and output circuit timing is independent of the input timing. Accordingly, phase differences between LRCI, BCKI and CKI do not affect device operation, and any jitter in the data input clock does not cause jitter in the output clock.

Note that the device should be reset if either or both of the LRCI and CKI clocks stop. If the device is not reset, even though the clocks are low frequency, incorrect circuit operation may occur, generating unwanted output noise.

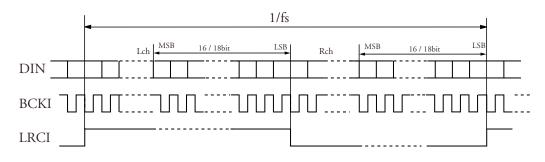
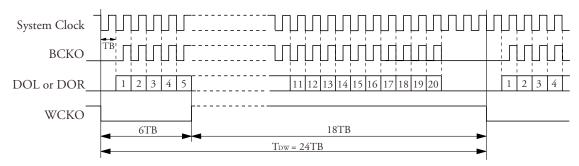


Figure 3. Audio data input timing

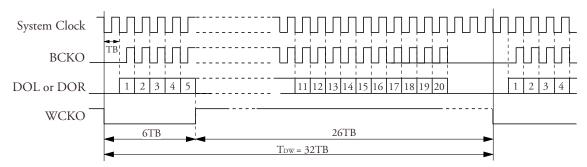
Audio Data Output (DOL, DOR, BCKO, WCKO, OFST)

The output data is in 16/18/20-bit serial, 8fs, simultaneous left and right-channel, 2s complement, MSB first format.


A DC offset can be added to arithmetic data before the data is output to reduce the D/A converter zerocrossing distortion for very small input signals. The offset added is approximately 0.8% of full-scale for the corresponding output bit length, as shown below.

- 512 LSB for 16-bit output
- 2048 LSB for 18-bit output
- 8192 LSB for 20-bit output

The DC offset is added to the output when OFST is HIGH. DC offset is OFF when OFST is LOW.


8fs serial data is output on independent DOL and DOR channels, in sync with the falling edge of the internal system clock and BCKO clock. The number of BCKO bit clock pulses per word changes depending on the output bit length selected (16/18/20 bits). Consequently, output data is latched into the D/A converter internal register on the falling of the edge of an output word clock WCKO, which has timing independent of the number of output bits as specified in the following table.

Parameter	Symbol	CKSL = HIGH	CKSL = LOW
Bit clock rate	Τ _B	t _{SYS} (1/192fs)	t _{SYS} (1/256fs)
Data word length	T _{DW}	24T _B	32T _B

The number of output bits is determined by the output bit length selected.

Figure 4. 8fs data output timing (\overline{CKSL} = HIGH)

The number of output bits is determined by the output bit length selected.

Figure 5. 8fs data output timing ($\overline{CKSL} = LOW$)

System Reset and Output Muting (RST)

System reset

The SM5841H must be reset at power-ON by applying a LOW-level pulse on $\overline{\text{RST}}$.

At system reset, the arithmetic and output timing counters are reset on the next LRCI start edge, as long as the CKI clock has already stabilized.

The power-ON reset pulse can be applied by a microcontroller or, for systems where CKI and LRCI are stable at power-ON, by connecting a 300 pF capacitor between $\overline{\text{RST}}$ and VSS. For systems that do not use a microcontroller, the capacitor must be chosen such that the CKI and LRCI clocks fully stabilize before $\overline{\text{RST}}$ goes from LOW to HIGH.

If the system clock is interrupted or is corrupted by jitter, after power-ON reset and all internal timing is synchronized, such that a timing error greater than $\pm 3/8 \times f_{LRCI}$ occurs, the internal timing is automatically reset on the next LRCI start edge. This resynchronization affects the internal operation and can generate a momentary click noise output.

Output muting

When $\overline{\text{RST}}$ goes LOW, the DOL and DOR outputs go LOW, immediately muting the output signal, and they remain LOW for intervals in word units. Muting is released and timing is synchronized on the 3rd rising edge of LRCI after $\overline{\text{RST}}$ goes HIGH. Note that during muted output, the BCKO and WCKO clocks do not stop.

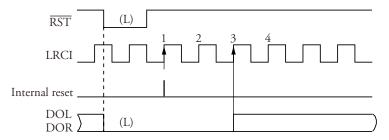
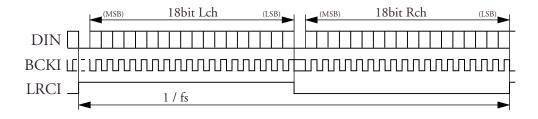
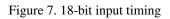
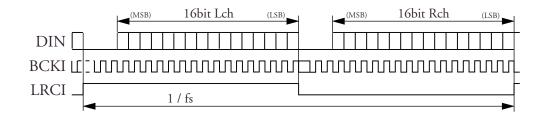
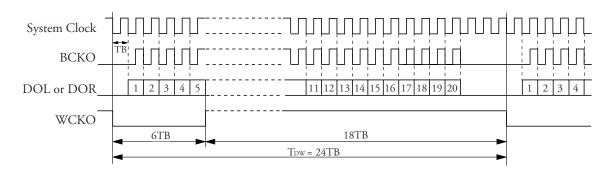
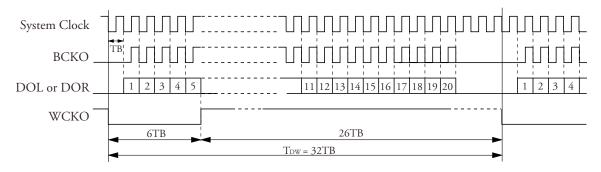




Figure 6. System reset timing and output muting

TIMING DIAGRAMS

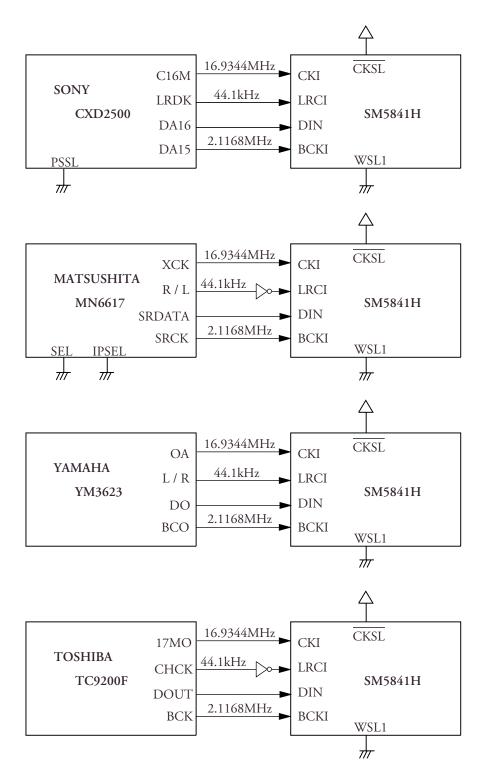
Input Timing Examples (DIN, BCKI, LRCI)


Figure 8. 16-bit input timing

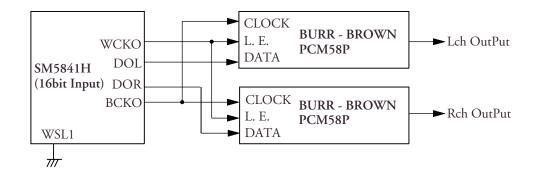
The number of output bits is determined by the output bit length selected.

Figure 9. 8fs data output timing (\overline{CKSL} = HIGH)

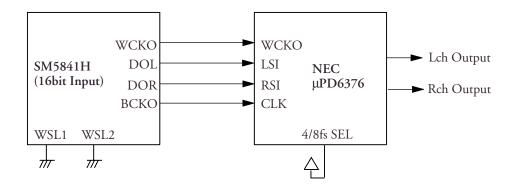


The number of output bits is determined by the output bit length selected.

Figure 10. 8fs data output timing ($\overline{CKSL} = LOW$)


APPLICATION CIRCUITS

Input Interface Circuits


Output Interface Circuits

18-bit, 2-DAC (8fs L+R output mode)

This example is for 16-bit input mode, so WSL1 is tied HIGH. For 18-bit mode, WSL1 is tied LOW.

16-bit, 1-DAC (8fs L+R output mode)

Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from NIPPON PRECISION CIRCUITS INC. (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

NIPPON PRECISION CIRCUITS INC.

4-3, Fukuzumi 2-chome, Koto-ku, Tokyo 135-8430, Japan Telephone: +81-3-3642-6661 Facsimile: +81-3-3642-6698 http://www.npc.co.jp/ Email: sales@npc.co.jp

NC9625BE 2002.11