DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

values at $C_{2}, A_{3}, B_{3}, A_{4}$, and B_{4}, are then used to determine outputs Σ_{3}, Σ_{4}, and C_{4}.

Input conditions at $A_{1}, A_{2}, B_{1}, B_{2}$, and C_{0} are used to determine outputs Σ_{1} and Σ_{2}, and the value of the internal carry C_{2}. The

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage $V_{\text {CC }}$: (See Note 1)	S5483 Circuits	4.5	5	5.5	V
Normalized Fan-Out From Outputs: C_{4}		4.75	5	5.25	V Circuits
	$\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ or Σ_{4}			5	
				10	

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$v_{\text {in(1) }}$	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$		2			v
$v_{\text {in }}(0)$	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$				0.8	v
$V_{\text {out(1) }}$	Logical 1 output voltage	$\mathrm{V}_{C C}=\mathrm{MIN}$		2.4			v
$\mathrm{V}_{\text {out (0) }}$	Logical 0 output voltage	$V_{C C}=$ MIN				0.4	v
$1 \mathrm{in}(0)$	Logical 0 level input current at $A_{1}, A_{3}, B_{1}, B_{3}$ or C_{0}	$v_{C C}=$ MAX, $V_{\text {in }}=0.4 \mathrm{~V}$				-3.2	mA
$1 \mathrm{in}(0)$	Logical 0 level input current at A_{2}, A_{4}, B_{2}, or B_{4}	$V_{\text {cc }}=$ MAX, $V_{\text {in }}=0.4 \mathrm{~V}$				-1.6	mA
$1 \mathrm{in}(1)$	Logical 1 level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$				80	$\mu \mathrm{A}$
	$A_{1}, A_{3}, B_{1}, B_{3}$, or C_{0}	$v_{\text {cC }}=$ MAX, $V_{\text {in }}=5.5 \mathrm{~V}$				1	mA
$\mathrm{I}_{\text {in(1) }}$	Logical 1 level input current	$v_{C C}=M A X, V_{\text {in }}=2.4 V$				40	$\mu \mathrm{A}$
	$\mathrm{A}_{2}, \mathrm{~A}_{4}, \mathrm{~B}_{2}$, or B_{4}	$V_{C C} @ M A X, V_{i n}-5.5 V$				1	mA
'os		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	S5483	-20		-55	mA
	at $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$, or $\Sigma_{4}{ }^{\dagger}$		N7483	-18		-55	mA
	Short-circuit output current	$V_{C C}=M A X$	55483	-20		-70	mA
'OS	at $\mathrm{C}_{4}{ }^{\dagger}$		N7483	-18		-70	mA
'cc	Supply current	$V_{C C}=\mathrm{MAX}$,			58	79	mA

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V}, \mathrm{T}_{\mathbf{A}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$, unless otherwise noted $\mathbf{N}=\mathbf{1 0}$

PARAMETER \ddagger		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{t} \mathrm{pd} 1$	From C_{0} to 1	$C_{L}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$		23	34	ns
${ }^{\text {t }}$ pd0	From C_{0} to 1	$C_{L}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$		20	34	ns
${ }^{1} \mathrm{pd} 1$	From C_{0} to 2	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$		24	35	ns
${ }^{\text {t }}$ pdo	From C_{0} to 2	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$		22	35	ns
${ }^{t} \mathrm{pd} 1$	From C_{0} to 3	$C_{L}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$		30	50	ns
${ }^{\text {t }}$ pd0	From C_{0} to 3	$C_{L}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$		24	40	ns
${ }^{\text {tpd } 1}$	From C_{0} to 4	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$		30	50	ns
${ }^{\text {tpdo }}$	From C_{0} to 4	$C_{L}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$		28	50	ns
${ }^{\text {t pd }} 1$	From C_{0} to C_{4}	$C_{L}=50 \mathrm{pF}$,	$R_{L}=780 \Omega$		12	20	ns
${ }^{t} \mathrm{pdO}$	From C_{0} to C_{4}	$C_{L}=50 \mathrm{pF}$,	$R_{L}=780 \Omega$		12	20	ns
${ }^{\text {'pd1 }}$	From A_{2} or B_{2} to 2	$C_{L}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$			40	ns
${ }^{\text {todO }}$	From A_{2} or B_{2} to 2	$C_{L}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$			35	ns
${ }^{\text {pod }} 1$	From A_{4} of B_{4} to 4	$C_{L}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$			40	ns
${ }^{\text {tpdo }}$	From A_{4} of B_{4} to 4	$C_{L}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$			35	ns

[^0]
[^0]: $t T_{p d 1}$ is propagation delay time to logical 1 level. $t_{p d o}$ is propagation delay time to logical 0 level.

 - For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circult type.
 - All typical values are at $V_{C C}=6 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 + Not more than one output should be shorted at a time.
 NOTE 1: These voltage values are with respect to network ground terminal.

