

PRELIMINARY DATA

$4K \times 4$ CMOS STATIC RAM

20, 25, AND 35 ns ADDRESS ACCESS TIME

SGS-THOMSON

- EQUAL ACCESS AND CYCLE TIMES
- 22-PIN, 300 MIL PLASTIC AND CERAMIC DIP
- ALL INPUTS AND OUTPUTS TTL COMPATIBLE, LOW CAPACITANCE, AND PROTECTED AGAINST STATIC DISCHARGE
- TTL STANDBY CURRENT UNAFFECTED BY ADDRESS ACTIVITY
- SEPARATE OUTPUT ENABLE CONTROL
- FLASH CLEAR FUNCTION

TRUTH TABLE

ĈĒ	ŪĒ	WE	CLR	Mode	DQ	Power
Н	Х	Х	X	Deselect	High Z	Standby
L	X	L	Н	Write	D _{IN}	Active
L	L	Н	Н	Read	D _{OUT}	Active
L	Н	Н	Н	Read	High Z	Active
L	X	L	L	Flash Clear	High Z	Active
L	L	Η	L	Flash Clear	Low Z	Active
L	Η	Η	L	Flash Clear	High Z	Active

X = Don't Care

DESCRIPTION

The MK41H79 features fully static operation requiring no external clocks or timing strobes, and equal address access and cycle times. It requires a single +5V \pm 10 percent power supply and is fully TTL compatible.

The device has a Chip Enable power down feature which automatically reduces power dissipation when the \overrightarrow{CE} pin is brought inactive (high). Standby power can be further reduced by raising the \overrightarrow{CE} pin to the full V_{CC} voltage. An Output Enable (\overrightarrow{OE}) pin provides a high speed tristate control, allowing fast read/write cycles to be achieved with the common-I/O data bus.

Flash Clear operation is provided on the MK41H79 via the CLR pin, and CE active (low). A low applied

A4	1 🗆	•	22 V _{CC}
A ₅	2		21 A3
A ₆	3 🗆		20 A2
A7	4 🗆		19 A,
A ₉	5 🗆	MK41H79	18 A ₀
A ₈	6 🗆	mitting	17 CLR
A 10	7 🗆		16 DQ
A ₁₁	8 🗆		15 DQ
CE	9 🗆		14 DQ2
OE	10 🗆		13 DQ3
GND	11		12 WE

PIN NAMES

$A_0 - A_{11} - Address$ DQ ₀ - DQ ₂ - Data I/O	OE - Output Enable
CLB - Flash Clear	WE - Write Enable
	GND - Ground
CE - Onip Enable	V_{CC} - + 5 volts

to the CLR pin clears all RAM bits to zero, making it especially useful for high speed cache and buffer storage applications.

OPERATIONS READ MODE

The MK41H79 is in the Read Mode whenever WE (Write Enable) is high and CE (Chip Enable) is low, providing a ripple-through access to data from four of 16,384 locations in the static storage array. The unique address specified by the 12 Address Inputs defines which one of 4096 nibbles of data is to be accessed. Valid data will be available at the four Data Output pins within t_{AA} after the last address input signal is stable, providing that the CE and OE (Output Enable) access times are satisfied. If CE or OE access times are not met, data access will be measured from the limiting parameter (t_{CEA} or t_{OEA}) rather

READ CYCLE TIMING

AC ELECTRICAL CHARACTERISTICS

(0 °C \leq T_A \leq 70 °C) (V_{CC} = 5.0 V \pm 10 percent)

than the address. The state of the four Data I/O pins is controlled by the CE, WE and OE control signals. The data lines may be in an indeterminate state at $t_{\rm CEL}$ and $t_{\rm OEL}$, but the data lines will always have valid data at $t_{\rm AA}.$

		MK41I	MK41H79-20 MK41H79-25		MK41H79-35				
SYM	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
t _{RC}	Read Cycle Time	20		25		35		ns	
t _{AA}	Address Access Time		20		25		35	ns	1
tCEL	Chip Enable to Low-Z	7		7		7		ns	2
t _{CEA}	Chip Enable Access Time		20		25		35	ns	1
tOEL	Output Enable to Low-Z	2		2		2		ns	2
tOEA	Output Enable Access Time		10		12		15	ns	1
t _{RCS}	Read Command Setup Time	0		0		0		ns	
t _{RCH}	Read Command Hold Time	0		0		0		ns	
t _{он}	Valid Data Out Hold Time	5		5		5		ns	1
1 _{CEZ}	Chip Enable to High-Z		8		10		13	ns	2
t _{OEZ}	Output Enable to High-Z		7		8		10	ns	2
t _{WEZ}	Write Enable to High-Z		8		10		13	ns	2

FIGURE 2. READ-READ-READ-WRITE TIMING

WRITE MODE

WRITE CYCLE TIMING

AC ELECTRICAL CHARACTERISTICS

The MK41H79 is in the Write Mode whenever the WE and CE inputs are in the low state. CE or WE must be high during address transitions. Addresses must be held valid throughout a write cycle. The Write begins with the concurrence of a low on WE and CE. Therefore, tas is referenced to the latter occurring edge of CE or WE. The write cycle is ter-minated by the earlier rising edge of CE or WE.

If the output is enabled (CE and OE low), then WE will return the outputs to high impedance within twrey of its falling edge. Care must be taken to avoid bus contention in this type of operation. Data-In must remain valid toH after the rising edge of CE or WE

$(0^{\circ}C \le T_A \le 70^{\circ}C) (V_{CC} = 5.0 \text{ V} \pm 10 \text{ percent})$ MK41H79-20 MK41H79-25 MK41H79-35 SYM PARAMETER MIN MAX MIN MAX MAX MIN UNITS NOTES Write Cycle Time 25 20 35 twc ns Address Setup Time 0 0 0 t_{AS} ns taw Address Stable to End of Write 16 20 30 ns Address Hold after End of Write 0 0 tAH 0 ns Chip Enable to End of Write 18 22 32 **CEW** ns Write Enable to End of Write 16 20 30 **twew** ns Data Setup Time 12 14 15 tos ns Data Hold Time 0 t_{DH} 0 0 ns Write Enable to Low-Z 5 5 5 ns twei

FIGURE 3. WRITE-WRITE-WRITE-READ TIMING

2

CLEAR CYCLE TIMING AC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_A \le 70^{\circ}C) (V_{CC} = 5.0 \pm 10\%)$

		MK41	179-20	MK41	IK41H79-25 MK41H79-35		25 MK41H79-35			
SYM	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES	
tFCC	Flash Clear Cycle Time	40		50		70		ns		
t _{CEC}	Chip Enable Low to End of Clear	40		50		70		ns		
t _{CLP}	Flash Clear Low to End of Clear	38		48		68		ns		
t _{CX}	Clear to Inputs Don't Care	0		0		0		ns		
1 _{CR}	End of Clear to Inputs Recognized	0		0		0		ns		
tcwx	Clear to Write Enable Don't Care	0		0		0		ns		
tонс	Valid Data Out Hold from Clear	5		5		5		ns	1	

FLASH CLEAR

A Flash Clear cycle sets all 16,384 bits in the RAM to logic zero. A Clear begins at the concurrence of a low on Chip Enable (CE) and Flash Clear (CLR). A Clear may be ended by a high on either CE or CLR. A low on CLR has no effect if the device is

disabled (CE high). A Clear may be executed within either a Read or a Write cycle. Figure 4 illustrates a Clear within a Read cycle. Clears within Write cycles are constrained only in that Write timing parameters must be observed as soon as the Flash Clear pin returns high.

STANDBY MODE

The MK41H79 is in Standby Mode whenever \overline{CE} is held at or above V_{IH} .

FIGURE 5. STANDBY MODE

STANDBY MODE

 $(0^{\circ}C \le T_A \le 70^{\circ}C) (V_{CC} = 5.0 \text{ V} \pm 10 \text{ percent})$

		MK41H79-20		MK41H79-25		MK41H79-35			
SYM	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
t _{PD}	Chip Enable High to Power Down		20		25		35	ns	
t _{PU}	Chip Enable Low to Power Up	0		0		0		ns	

APPLICATION

The MK41H79 operates from a 5.0 volt supply. It is compatible with all standard TTL families on all inputs and outputs. The device should share a solid ground plane with any other devices interfaced with it; particularly TTL devices. Additionally, because the outputs can drive rail-to-rail into high impedance loads, the 41H79 can also interface to 5 volt CMOS on all inputs and outputs. Refer to the normalized performance curves that follow.

Since very high frequency current transients will be associated with the operation of the MK41H79, power line inductance must be minimized on the circuit board power distribution network. Power and ground tracegridding or separate power planes can be employed to reduce line inductance. Additionbelly, a high frequency decoupling capacitor should be placed next to each RAM. The capacitor should be 0.1 μ F or larger. A pull-up resistor is also recommended for CLR on the MK41H79. This will ensure that any low going system noise, coupled onto the input, does not drive CLR below V_{IH} minimum specifications.

Though often times not thought of as such, the traces on a memory board are basically unterminated, low impedance transmission lines. As such they are subject to signal reflections manifested as noise, undershoots and excessive ringing. Series termination in close proximity to the TTL drivers can improve driver/signal path impedance matching. While experimentation most often proves to be the only practical approach to selection of series resistors, values in the range of 10 to 33 ohms often prove most suitable.

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to GND	-1.0 V to	+7.0 V
Ambient Operating Temperature (T _A)	0°C to	+70°C
Ambient Storage Temperature (Plastic)	55°C to	+125℃
Ambient Storage Temperature (Ceramic)	65°C to	+150°C
Total Device Power Dissipation		1 Watt
Output Current per Pin		50 mA
"Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent dar	nage to the	device

This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_A \leq 70^{\circ}C)$

SYM	PARAMETER	MIN	ТҮР	MAX	UNITS	NOTES
V _{CC}	Supply Voltage	4.5	5.0	5.5	V	3
GND	Supply Voltage	0	0	0	V	
VIH	Logic 1 Voltage, All Inputs	2.2		V _{CC} +1.0	V	3
VIL	Logic 0 Voltage, All Inputs	-0.3		0.8	V	3

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_A \le 70^{\circ}C) (V_{CC} = 5.0 \text{ V} \pm 10 \text{ percent})$

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
I _{CC1}	Average Power Supply Current		120	mA	4
I _{CC2}	CC2 TTL Standby Current		16	mA	5
I _{CC3}	CMOS Standby Current		8	mA	6
I _{IL}	Input Leakage Current (Any Input Pin)	-1	+1	μA	7
IOL	Output Leakage Current (Any Output Pin)	-10	+10	μA	8
V _{OH}	Output Logic 1 Voltage ($I_{OUT} = -4 \text{ mA}$)	2.4		V	3
V _{OL}	Output Logic 0 Voltage (I _{OUT} = +8 mA)		0.4	V	3

CAPACITANCE

 $(T_A = 25 \,^{\circ}C, f = 1.0 \,\text{MHz})$

SYM	PARAMETER	TYP	MAX	UNITS	NOTES
C ₁	Capacitance on input pins	4	5	pF	9
C ₂	Capacitance on DQ pins	8	10	pF	9

NOTES

- 1. Measured with load shown in Figure 6(A).
- 2. Measured with load shown in Figure 6(B).
- 3. All voltages referenced to GND.
- 4. I_{CC1} is measured as the average AC current with V_{CC} = V_{CC} (max) and with the outputs open circuit. t_{RC} = t_{BC} (min) is used.
- 5. CE = VIH, all other inputs = Don't Care.

- 6. V_{CC} (max) \geq CE \geq V_{CC} 0.3 V, all other inputs = Don't Care.
- 7. Input leakage current specifications are valid for all V_{IN} such that 0 V < V_{IN} < V_{CC}. Measured at V_{CC} = V_{CC} (max).
- 8. Output leakage current specifications are valid for all V_{OUT} such that 0 V < V_{OUT} < V_{CC}, $\overline{CE} = V_{IH}$ and V_{CC} in valid operating range.

9. Capacitances are sampled and not 100% tested.

AC TEST CONDITIONS

Input Levels	GND	to 3.0 V
Transition Times		5 ns
Input and Output Signal Timing Reference Level		1.5 V
Ambient Temperature	0°C	to 70°C
V _{CC}	± 10	percent

FIGURE 6. OUTPUT LOAD CIRCUITS

NORMALIZED DC AND AC PERFORMANCE CHARACTERISTICS

NORMALIZED DC AND AC PERFORMANCE CHARACTERISTICS

22 PIN "N"PACKAGE PLASTIC DIP

MK41H79(N,P)-20/25/35

22 PIN "P" PACKAGE SIDE BRAZED CERAMIC DIP

ORDERING INFORMATION

PART NUMBER	ACCESS TIME	PACKAGE TYPE	TEMPERATURE RANGE
MK41H79N-20	20 ns	22 pin Plastic DIP	0°C to 70°C
MK41H79N-25	25 ns	22 pin Plastic DIP	0°C to 70°C
MK41H79N-35	35 ns	22 pin Plastic DIP	0°C to 70°C
MK41H79P-20	20 ns	22 pin Ceramic DIP	0°C to 70°C
MK41H79P-25	25 ns	22 pin Ceramic DIP	0℃ to 70℃
MK41H79P-35	35 ns	22 pin Ceramic DIP	0°C to 70°C

