MOS LSI

LC89977M

CCD Delay Line for PAL

Preliminary

Overview

The LC89977M is CCD delay line for PAL television system that includes a chrominance signal crosstalk exclusion filter and a luminance signal 1-H delay line on chip.

Features

- 5-V single-voltage power supply
- Built-in 3 × PLL frequency multiplier circuit allows 3fsc operation from an fsc (4.43 MHz) input.
- Can be switched between the PAL/GBI, and 4.43NTSC formats by setting control pin values.
- Includes a built-in crosstalk exclusion comb filter for the chrominance signal that provides high-precision comb characteristics in an adjustment-free circuit.
- Peripheral circuits provided on chip for operation with a minimum of external components.
- Positive-phase signal input, positive-phase signal output (luminance signal)

Functions

- CCD shift registers (for chrominance and luminance signals)
- Timig generator and clock driver for CCD
- Delay time selective circuit
- CCD signal adder
- Auto-bias circuit
- Sync tip clamp circuit (luminance signal)
- Center bias circuit (chrominance signal)
- Sample-and-hold circuit
- $3 \times PLL$ frequency multiplier circuit
- 3fsc clock output circuit
- High voltage generator for CCD Reset Drain (RD)

Specifications Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.3 to +6.0	V
Allowable power dissipation	Pd max		250	mW
Operating temperature	Topr		-10 to +60	°C
Storage temperature	Tstg		-55 to +125	°C

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

Package Dimensions

unit: mm 3111-MFP14S

LC89977M

Allowable Operating Ranges at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions		Unit		
	Symbol	Conditions	min	typ	max	Unit
Supply voltage	V _{DD}		4.75	5.00	5.25	V
Clock input amplitude	V _{CLK}		300	500	1000	mVp-p
Clock frequency	F _{CLK}	Sine wave		4.43361875		MHz
Chrominance signal input amplitude	V _{IN-C}			350	500	mVp-p
Luminance signal input amplitude	V _{IN-Y}			400	572	mVp-p

Pin Assignment

Chrominance signal input 1	C-IN1	1	\bigcirc	14	V _{SS}	Ground	
Power supply	VDD	2		13	C-OUT	Chrominance signa	l output
Chrominance signal input 2	C-IN2	3		12	CONT	Control	
	NC	4	LC89977M	11	3FSC	3fsc clock output	
Luminance signal input	Y-IN	5		10	CLK	Clock input	
	NC	6		9	VCO	VCO filter output	
Luminance signal output	Y-OUT	7		8	RD	Step-up circuit outp	ut
]		Top view	A06298

Block Diagram

Control Pin Functions

CONT	Mode (representative)	Chrominance signal delay (number of CCD stages)	Luminance signal delay (number of CCD stages)
Low	PAL/GBI	2H (1703.5) + 0H (1)	1H (848)
High	4.43NTSC	1H (845.5) + 0H (1)	1H (842)

Switching Voltage Levels

Parameter	Symbol	Conditions		Unit		
Falanetei		Conditions	min	typ	max	
Switching voltage level: low	VL		-0.3	0.0	+0.5	V
Switching voltage level: high	V _H		2.0	5.0	6.0	V

Note: *Since the control pins have built-in pull-down resistors (about 70 kΩ), leaving these pins opens effectively sets them to the low level.

Function of the 3FSC Pin

This pin provides a 3fsc clock signal generated by the $3 \times PLL$ frequency multiplier circuit.

(When the output is not used)

3FSC

A06300

7

Electrical Characteristics at V_{DD} = 5.0 V, Ta = 25°C, F_{CLK} = 4.43361875 MHz, V_{CLK} = 500 mVp-p

Parameter	Quarket			Switcl	h states		Ratings		
Parameter	Symbol	SW1	SW2	SW3	Test conditions	min	typ	max	Unit
Supply current	I _{DD-1}	а	а	b	*1	27	32	37	mA
	I _{DD-2}	b	а	b	*1	21			mA
[Chrominance signal characteristics] (with no in	put to Y-IN)								
	V _{INC-1}	а	а	b	*2	- 1.9	2.4	2.9	
DC output voltage	V _{INC-2}	b	а	b	*2	1.5	2.7	2.3	· ·
	V _{OUTC-1}	а	а	b	*2	1.4	1.9	2.4	
	V _{OUTC-2}	b	а	b	*2	1.4	1.5	2.4	· ·
Voltage gain	G _{VC-1}	а	а	b	*3	2	0	+2	dB
	G _{VC-2}	b	а	b	*3	-2			
Comb depth	C _{D-1}	а	а	b	*4		-40	-35	dB
	C _{D-2}	b	а	b	*4				
Linearity	L _{NC-1}	а	а	b	*5		0.0	+0.3	dB
Lincurky	L _{NC-2}	b	а	b	*5	0.0			
Clock leakage (3fsc)	L _{CK3C-1}	а	а	b	*6		10	50	mVrms
Clock leakage (Sisc)	L _{CK3C-2}	b	а	b	*6			50	
Clock leakage (fsc)	L _{CK1C-1}	а	а	b	*6		0.5	1.5	mVrms
Clock leakage (130)	L _{CK1C-2}	b	а	b	*6		0.5	1.5	mvms
Noise	N _{C-1}	а	а	b	*7		0.5	2.0	mVrms
	N _{C-2}	b	а	b	*7		0.5	2.0	IIIVIIIIS
Output impedance	Z _{OC-1}	а	а	a, b	*8	200	350	500	Ω
	Z _{OC-2}	b	а	a, b	*8	200	550	500	52
0-H delay time	T _{DC-1}	а	а	b	*9		130		ns
U-IT delay lille	T _{DC-2}	b	а	b	*9		130		115

Continued on next page.

Continued from preceding page.

Deremeter	Cumbal			Switcl	h states		Ratings		
Parameter	Symbol	SW1	SW2	SW3	Test conditions	min	typ	max	- Unit
[Luminance signal characteristics] (With	n no signals input to (C-IN1 a	nd C-IN	I2)					
	V _{INY-1}	а	а	b	*10	1.3	1.8	2.3	v
DC output voltage	V _{INY-2}	b	а	b	*10	1.3		2.3	
	V _{OUTY-1}	а	а	b	*10	0.7	1.2	1.7	v
	V _{OUTY-2}	b	а	b	*10	0.7	1.2		V
Voltage gain	G _{VY-1}	а	а	b	*11	-2	0	+2	dB
voltage gain	G _{VY-2}	b	а	b	*11	-2	0		
Frequency response	G _{FY-1}	а	b	b	*12	-2	0	+2	dB
Frequency response	G _{FY-2}	b	b	b	*12	-2			
Differential gain	D _{GY-1}	а	а	b	*13	0	5	8	%
	D _{GY-2}	b	а	b	*13				
Differential phase	D _{PY-1}	а	а	b	*13	0	5	8	deg
Differential priase	D _{PY-2}	b	а	b	*13				ueg
Linearity	L _{SY-1}	а	а	b	*14	37	40	43	%
Linearity	L _{SY-2}	b	а	b	*14	- 31			
Clock leakage (3fsc)	L _{CK3Y-1}	а	а	b	*15		40	50	
Clock leakage (Sisc)	L _{CK3Y-2}	b	а	b	*15		10	50	mVrms
Clock leakage (fsc)	L _{CK1Y-1}	а	а	b	*15		0.5	1.5	mVrms
Clock leakage (ISC)	L _{CK1Y-2}	b	а	b	*15		0.5	1.5	
Noise	N _{Y-1}	а	а	b	*16		0.5	2.0	mVrms
Noise	N _{Y-2}	b	а	b	*16		0.5	2.0	mvims
Output impedance	Z _{OY-1}	а	а	c, b	*17	250	400	550	Ω
Output impedance	Z _{OY-2}	а	b	c, b	*17	200	400	000	1 22
Delautime	T _{DY-1}	а	а	b	*18		63.81		μs
Delay time	T _{DY-2}	b	а	b	*18		63.36		μs

Test Conditions

- 1. The supply current with no input signal
- 2. The pin output voltage (the center bias voltage) with no input signal
- 3. Measure the C-OUT output when a 350-mVp-p sine wave is input to C-IN1 and C-IN2.

 $G_{VC} = 20 log \quad \frac{C-OUT \text{ output } [mVp-p]}{350 \ [mVp-p]} \ [dB]$

Test frequencies:

G_{VC-1}: 4.429662 MHz (PAL/GBI) G_{VC-2}: 4.425694 MHz (4.43NTSC)

4. Measure the comb depth from the C-OUT output when a 350-mVp-p sine wave with frequency fa is input to C-IN1 and C-IN2, and when a sine wave of frequency fb is input.

5. Measure the C-OUT output when a 200-mVp-p sine wave is input to C-IN1 and C-IN2, and when a 500-mVp-p sine wave is input, and calculate the gain difference as follows:

 $\begin{array}{c} L_{NC} = 20 log \quad \left(\begin{array}{c} \hline \text{The output for a 500-mVp-p input [mVp-p]} \\ \hline 500 \ [mVp-p] \end{array} \right) \begin{array}{c} \hline \text{The output for a 200-mVp-p input [mVp-p]} \\ \hline 200 \ [mVp-p] \end{array} \right) [dB] \\ \hline \text{Test Frequencies} \\ L_{NC-1} & 4.429662 MHz \ (PAL/GBI) \\ L_{NC-2} & 4.425694 MHz \ (4.43 NTSC) \end{array}$

- 6. Measure the 3fsc (13.3 MHz) and fsc (4.43 MHz) components in the C-OUT output with no input signal.
- 7. Measure the noise in the C-OUT output with no input signal.

Measure the noise with a noise meter with a 200-kHz high-pass filter and a 5-MHz low-pass filter.

8. Input a 350-mVp-p sine wave to C-IN1 and C-IN2. Let V1 be the C-OUT output when SW3 is set to the 'a' position, and let V2 be the C-OUT output when SW3 is set to the 'b' position.

$$\begin{split} Z_{OC} = & \frac{V2 \; [mVp\text{-}p] - V1 \; [mVp\text{-}p]}{V1 \; [mVp\text{-}p]} \times 500 \; [dB] \\ \text{Test Frequencies} \\ & Z_{OC\text{-}1}\text{: } 4.429662 \; \text{MHz} \; (\text{PAL/GBI}) \\ & Z_{OC\text{-}2}\text{: } 4.425694 \; \text{MHz} \; (4.43\text{NTSC}) \end{split}$$

- 9. The delay time in the C-OUT output with respect to the C-IN1 input. This is the CCD 1-bit delay.
- 10. The pin output voltage (clamp voltage) with no input signal.
- 11. Measure the Y-OUT output with a 200-kHz 400-mVp-p sine wave input to Y-IN.

$$G_{VY} = 20 \log \frac{Y-OUT \text{ output } [mVp-p]}{400 \ [mVp-p]} \ [dB]$$

12. Measure the Y-OUT output when a 200-kHz 200-mVp-p sine wave is input to Y-IN, and when a 3.3-MHz 200-mVp-p sine wave is input.

$$G_{FY} = 20\log \frac{\text{The Y-OUT output for a 3.3-MHz input [mVp-p]}}{\text{The Y-OUT output for a 200-kHz input [mVp-p]}} [dB]$$

Here, adjust Vbias so that the clamp level is +250 mV.

13. Apply a 5-step staircase wave (as in the figure below) to Y-IN, and measure the differential gain and differential phase in the Y-OUT output using a vector scope.

14. Apply a 5-step staircase wave (as in the figure below) to Y-IN, and measure the luminance level (Y) and the sync level (S) in the Y-OUT output.

- 15. Measure the 3fsc (13.3 MHz) and fsc (4.43 MHz) components in the Y-OUT output with no input signal.
- 16. Measure the noise in the Y-OUT output with no input signal. Measure the noise with a noise meter with a 200-kHz low-pass filter, a 5-MHz low-pass filter, and a 4.43-MHz trap filter.
- 17. Input a 200-kHz, 400-mVp-p sine wave to Y-IN1. Let V1 be the V-OUT output when SW3 is set to the 'c' position, and let V2 be the Y-OUT output when SW3 is set to the 'b' position.

 $Z_{OY} = \frac{V2 \ [mVp-p] - V1 \ [mVp-p]}{V1 \ [mVp-p]} \times 500 \ [\Omega]$

18. Measure the delay time in the Y-OUT output with respect to the input to Y-IN.

LC89977M

Test Circuit

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of August, 1997. Specifications and information herein are subject to change without notice.