Precision Gain = 10 DIFFERENTIAL AMPLIFIER

FEATURES

- ACCURATE GAIN: $\pm 0.025 \%$ max
- HIGH COMMON-MODE REJECTION: 86 dB min
- NONLINEARITY: 0.001\% max
- EASY TO USE
- PLASTIC 8-PIN DIP, SO-8 SOIC PACKAGES

DESCRIPTION

The INA106 is a monolithic Gain $=10$ differential amplifier consisting of a precision op amp and on-chip metal film resistors. The resistors are laser trimmed for accurate gain and high common-mode rejection. Excellent TCR tracking of the resistors maintains gain accuracy and common-mode rejection over temperature.
The differential amplifier is the foundation of many commonly used circuits. The INA106 provides this precision circuit function without using an expensive resistor network. The INA106 is available in 8-pin plastic DIP and SO-8 surface-mount packages.

APPLICATIONS

- $G=10$ DIFFERENTIAL AMPLIFIER
- $G=+10$ AMPLIFIER
- $G=-10$ AMPLIFIER
- $G=+11$ AMPLIFIER
- INSTRUMENTATION AMPLIFIER

SPECIFICATIONS

ELECTRICAL

At $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise specified.

PARAMETER	CONDITIONS	INA106KP, U			UNITS
		MIN	TYP	MAX	
GAIN Initial(1) Error vs Temperature Nonlinearity ${ }^{(2)}$			$\begin{gathered} 10 \\ 0.01 \\ -4 \\ 0.0002 \end{gathered}$	$\begin{aligned} & 0.025 \\ & 0.001 \\ & \hline \end{aligned}$	$\begin{gathered} \text { V/V } \\ \% \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \% \\ \hline \end{gathered}$
OUTPUT Related Voltage Rated Current Impedance Current Limit Capacitive Load	$\begin{gathered} \mathrm{I}_{\mathrm{O}}=+20 \mathrm{~mA},-5 \mathrm{~mA} \\ \\ \mathrm{~V}_{\mathrm{O}}=10 \mathrm{~V} \end{gathered}$ To Common Stable Operation	$\begin{gathered} 10 \\ +20,-5 \end{gathered}$	$\begin{gathered} 12 \\ 0.01 \\ +40 /-10 \\ 1000 \end{gathered}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \Omega \\ \mathrm{~mA} \\ \mathrm{pF} \end{gathered}$
INPUT Impedance Voltage Range Common-Mode Rejection ${ }^{(3)}$	Differential Common-Mode Differential Common-Mode $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$	$\begin{gathered} \pm 1 \\ \pm 11 \\ 86 \end{gathered}$	$\begin{gathered} 10 \\ 110 \\ \\ 100 \end{gathered}$		$\begin{gathered} \mathrm{k} \Omega \\ \mathrm{k} \Omega \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~dB} \end{gathered}$
OFFSET VOLTAGE Initial vs Temperature vs Supply vs Time	$R T I^{(4)}$ $\pm \mathrm{V}_{\mathrm{S}}=6 \mathrm{~V} \text { to } 18 \mathrm{~V}$		$\begin{gathered} 50 \\ 0.2 \\ 1 \\ 10 \end{gathered}$	$\begin{gathered} 200 \\ 10 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{mo}$
NOISE VOLTAGE $\begin{aligned} & \mathrm{f}_{\mathrm{B}}=0.01 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=10 \mathrm{kHz} \end{aligned}$	RTI(5)		$\begin{gathered} 1 \\ 30 \end{gathered}$		$\begin{gathered} \mu \mathrm{Vp}-\mathrm{p} \\ \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{gathered}$
DYNAMIC RESPONSE Small Signal Full Power BW Slew Rate Settling Time: 0.1\% 0.01\% 0.01\%	$\begin{gathered} -3 \mathrm{~dB} \\ \mathrm{~V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p} \\ \mathrm{~V}_{\mathrm{O}}=10 \mathrm{~V} \text { Step } \\ \mathrm{V}_{\mathrm{O}}=10 \mathrm{~V} \text { Step } \\ \mathrm{V}_{\mathrm{CM}}=10 \mathrm{~V} \text { Step, } \mathrm{V}_{\text {DIFF }}=0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 30 \\ 2 \end{gathered}$	$\begin{gathered} 5 \\ 50 \\ 3 \\ 5 \\ 10 \\ 5 \end{gathered}$		MHz kHz V/ $\mu \mathrm{s}$ $\mu \mathrm{S}$ $\mu \mathrm{s}$ $\mu \mathrm{S}$
POWER SUPPLY Rated Voltage Range Quiescent Current	Derated Performance $V_{O}=0 V$	± 5	$\begin{aligned} & \pm 15 \\ & \pm 1.5 \end{aligned}$	$\begin{gathered} \pm 18 \\ \pm 2 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$
TEMPERATURE RANGE Specification Operation Storage		$\begin{gathered} 0 \\ -40 \\ -65 \end{gathered}$		$\begin{gathered} +70 \\ +85 \\ +150 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

NOTES: (1) Connected as difference amplifier (see Figure 1). (2) Nonlinearity is the maximum peak deviation from the best-fit straight line as a percent of full-scale peak-to-peak output. (3) With zero source impedance (see "Maintaining CMR" section). (4) Includes effects of amplifiers's input bias and offset currents. (5) Includes effect of amplifier's input current noise and thermal noise contribution of resistor network.

PIN CONFIGURATION

NOTE: (1) Pin 1 indentifier for SO-8 package. Model number identification may be abbreviated on SO-8 package due to limited available space.

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage	8V
Input Voltage Range	$\pm \mathrm{V}_{\text {S }}$
Operating Temperature Range: P, U	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s): P $+300^{\circ} \mathrm{C}$
Wave Soldering (3s, max) U	.. $+260^{\circ} \mathrm{C}$
Output Short Circuit to Common Continuous

A ELECTROSTATIC DISCHARGE SENSITIVITY

This integral circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER	(1)
TEMPERATURE			
RANGE			

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

[^0]
TYPICAL PERFORMANCE CURVES

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

$2 \mu \mathrm{~s} / \mathrm{div}$

$2 \mu \mathrm{~s} / \mathrm{div}$

SMALL SIGNAL RESPONSE (No Load)

$2 \mu \mathrm{~s} / \mathrm{div}$

TOTAL HARMONIC DISTORTION AND NOISE
vs FREQUENCY

TYPICAL PERFORMANCE CURVES (CONT)

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

APPLICATIONS INFORMATION

Figure 1 shows the basic connections required for operation of the INA106. Power supply bypass capacitors should be connected close to the device pins as shown.

FIGURE 1. Basic Power Supply and Signal Connections.
The differential input signal is connected to pins 2 and 3 as shown. The source impedance connected to the inputs must be equal to assure good common-mode rejection. A 5Ω mismatch in source impedance will degrade the commonmode rejection of a typical device to approximately 86 dB . If the source has a known source impedance mismatch, an additional resistor in series with one input can be used to preserve good common-mode rejection.
The output is referred to the output reference terminal (pin 1) which is normally grounded. A voltage applied to the

Ref terminal will be summed with the output signal. The source impedance of a signal applied to the Ref terminal should be less than 10Ω to maintain good common-mode rejection.
Figure 2 shows a voltage applied to pin 1 to trim the offset voltage of the INA106. The known 100Ω source impedance of the trim circuit is compensated by the 10Ω resistor in series with pin 3 to maintain good CMR.

FIGURE 2. Offset Adjustment.
Referring to Figure 1, the CMR depends upon the match of the internal R_{4} / R_{3} ratio to the $\mathrm{R}_{1} / \mathrm{R}_{2}$ ratio. A CMR of 106 dB requires resistor matching of 0.005%. To maintain high CMR over temperature, the resistor TCR tracking must be better than $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. These accuracies are difficult and expensive to reliably achieve with discrete components.

FIGURE 3. Difference Amplifier with Gain and CMR Adjust.

FIGURE 4. Precision $G=-10$ Inverting Amplifier.

FIGURE 5. Voltage Follower with Input Protection.

FIGURE 6. Precision Instrumentation Amplifier.

FIGURE 7. Precision Summing Amplifier.

FIGURE 8. Precision G = 11 Buffer.

[^0]: The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

