

CMOS OCTAL BUS TRANSCEIVER WITH ADJUSTABLE OUTPUT VOLTAGE, 3-STATE OUT-PUTS, 5 VOLT TOLERANT I/O

IDT74LVCC3245A

FEATURES:

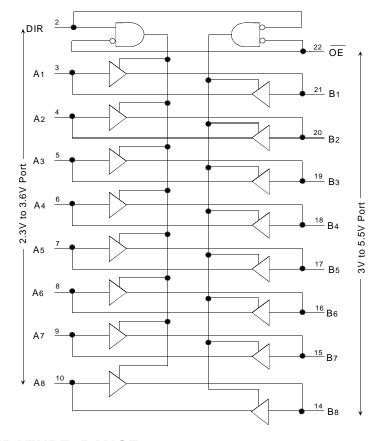
- 0.5 MICRON CMOS Technology
- VCCA = 2.3V to 3.6V
- VCCB = 3V to 5.5V
- CMOS power levels (0.4µW typ. static)
- Rail-to-Rail output swing for increased noise margin
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion
- Available in SOIC, SSOP, QSOP, and TSSOP packages

Drive Features for LVCC3245A:

- High Output Drivers: ±24mA
- Reduced system switching noise

APPLICATIONS:

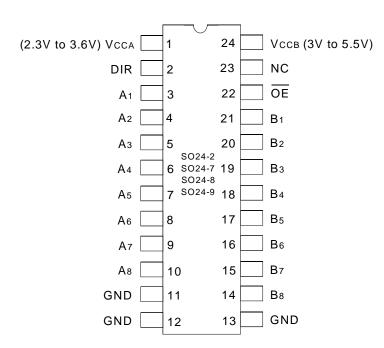
- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems


DESCRIPTION:

The LVCC3245A is manufactured using advanced dual metal CMOS technology. This 8-bit (octal) noninverting bus transceiver contains two separate supply rails. The B port is designed to track VCCB, which accepts voltages from 3V to 5.5V, and the A port is designed to track VCCA, which operates at 2.3V to 3.6V. This allows for translation from a 3.3V to a 5V system environment and vice-versa, or from a 2.5V to a 3.3V system environment, and vice-versa.

This LVCC3245A is ideal for asynchronous communication between two data buses (A and B). The device transmits data from A to B or from B to A, depending on the logic level at the direction-control (DIR) input. The output-enable $(\overline{\text{OE}})$ input can be used to disable the device so the buses are effectively isolated.

The LVCC3245A has been designed with a \pm 24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.


FUNCTIONAL BLOCK DIAGRAM

INDUSTRIAL TEMPERATURE RANGE

JULY 2000

PIN CONFIGURATION

SOIC/ SSOP/ QSOP/ TSSOP TOP VIEW

PIN DESCRIPTION

Pin Names	Description			
ŌĒ	Output Enable Input (Active LOW)			
DIR	Direction Control Input			
Ax	Port A Inputs or 3-State Outputs			
Вх	Port B Inputs or 3-State Outputs			
NC	No Internal Connection			

FUNCTION TABLE (1)

Inputs		
ŌĒ	DIR	Outputs
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Χ	High Z State

NOTE:

H = HIGH Voltage Level
 L = LOW Voltage Level
 X = Don't Care

ABSOLUTE MAXIMUM RATINGS FOR VCCB (1)

Symbol	Description	Max.	Unit
VTERM	Terminal Voltage with Respect to GND	- 0.5 to +6	V
Tstg	Storage Temperature	- 65 to +150	°C
Іоит	DC Output Current	– 50 to +50	mA
lıĸ	Continuous Clamp Current,	- 50	mA
Іок	$V_1 < 0$ or $V_0 < 0$		
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		

ABSOLUTE MAXIMUM RATINGS

FOR VCCA (1)

Symbol	Description	Max.	Unit
VTERM	Terminal Voltage with Respect to GND	- 0.5 to +6	V
Tstg	Storage Temperature	- 65 to +150	°C
Іоит	DC Output Current	– 50 to +50	mA
lıĸ	Continuous Clamp Current,	- 50	mA
Іок	VI < 0 or Vo < 0		
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = $+25^{\circ}$ C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	pF
CI/O	I/O Port Capacitance	VIN = 0V	11	pF

NOTE:

1. As applicable to the device type.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (A PORT)

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $T_A = -40^{\circ}C$ To $+85^{\circ}C$; $V_{CCA} = 2.3V$ to $3.6V^{(1)}$

Symbol	Parameter	Tes	t Conditions	Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Voltage Level	VoB <u><</u> 0.1V	VCCA = 2.3V, VCCB = 3V	1.7	_	_	
		VOB ≥ VCCB - 0.1V	Vcca = 2.7V to 3.6V	2	_	_	٧
VIL	Input LOW Voltage Level		VCCA = 2.3V, VCCB = 3V	_	_	0.7	
			Vcca = 2.7V to 3.6V	_	_	0.8	V
Іін	Input Leakage Current Control Inputs	VCCA = 3.6V	VI = 0 to 5.5V	_	_	±1	μA
liL							
Іохн	High Impedance Output Current	VCCA = 3.6V	Vo = Vcca or GND	_	_	±5	μΑ
lozl	(3-State Output pins)			_	_		
loff	Input/Output Power Off Leakage	$V_{CCA} = 0V$, V_{IN} or $V_{O} \le 5.5V$		_	_	±50	μA
VH	Input Hysteresis	VCCA = 3.3V		_	100	_	mV
ICCL	Quiescent Power Supply Current	VCCA = 3.6V	VIN = GND or Vcc	_	_	50	μA
Іссн							
Iccz							
Δlcc	Quiescent Power Supply	One input at Vcca - 0.6V,		_	_	500	μΑ
	Current Variation	other inputs at Vcca or GND					

NOTES:

- 1. VCCB = 3V to 5.5V
- 2. Typical values are at Vcc = 3.3V, +25°C ambient.
- 3. This applies in the disabled state only.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (B PORT)

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $T_A = -40^{\circ}C$ To $+85^{\circ}C$; $V_{CCB} = 3V$ to $5.5V^{(1)}$

Symbol	Parameter	Test	t Conditions	Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Voa ≤ 0.1V	Vccb = 3V to 3.6V	2	_	_	
		Voa ≥ Vcca – 0.1V	Vccb = 5.5V	3.85	-	_	V
VIL	Input LOW Voltage Level		VCCB = 3V to 3.6V	_	_	0.8	
			VCCB = 5.5V	_	_	1.65	V
Іін	Input Leakage Current	VCCB = 3.6V	VI = 0 to 5.5V	_	_	±1	μA
İIL							
lozh	High Impedance Output Current	VCCB = 3.6V	Vo = Vccb or GND	_	_	±5	μΑ
lozl	(3-State Output pins)			_	_	_	
loff	Input/Output Power Off Leakage	VCCB = 0V, VIN or VO ≤	5.5V	_	_	±50	μA
VH	Input Hysteresis	VCCB = 3.3V		_	100	_	mV
ICCL	Quiescent Power Supply Current	VCCB = 3.6V	VIN = GND or Vcc	_	_	50	μA
Іссн		VCCB = 5.5V		_	_	80	
Iccz							
Δlcc	Quiescent Power Supply	One input at VCCB - 2.1\	One input at VCCB - 2.1V,		_	1.5	mA
	Current Variation	other inputs at Vccв or (GND				

NOTES:

- 1. VCCA = 2.3V to 3.6V
- 2. Typical values are at Vcc = 3.3V, +25°C ambient.
- 3. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS, Vcca = 2.3V to 3.6V (A PORT)

Symbol	Parameter		Test Condition	Min.	Max.	Unit	
Vона	Output HIGH Voltage	VCCA = 3V	VCCB = 3V	IOH = - 0.1mA	2.9	_	V
	(B port to A port)	VCCA = 2.3V	VCCB = 3V	IOH = -8mA	2	_	
		VCCA = 2.7V	VCCB = 3V	IOH = - 12mA	2.2	_	
		VCCA = 3V	VCCB = 3V		2.4	_	
		VCCA = 3V	Vccb = 3V	I _{OH} = - 24mA	2.2	_	
		VCCA = 2.7V	VCCB = 4.5V		2	_	
Vola	Output LOW Voltage	VCCA = 3V	VCCB = 3V	IoL = 0.1mA	_	0.1	V
	(B port to A port)	VCCA = 2.3V	Vccb = 3V	IoL = 8mA	_	0.6	
		VCCA = 2.7V	VCCB = 3V	IoL = 12mA	_	0.5	
		VCCA = 3V	VCCB = 3V	IoL = 24mA	_	0.5	
		VCCA = 2.7V	Vccb = 4.5V		_	0.5	

NOTE:

OUTPUT DRIVE CHARACTERISTICS, Vccb = 3V to 5.5V (B PORT)

Symbol	Parameter		Test Conditions ⁽¹)	Min.	Max.	Unit
Vонв	Output HIGH Voltage	VCCB = 3V	VCCA = 3V	IOH = - 0.1mA	2.9	_	V
	(A port to B port)	VCCB = 3V	VCCA = 2.3V	IOH = - 12mA	2.4	_	
		VCCB = 3V	VCCA = 2.7V		2.4	_	
		VCCB = 3V	VCCA = 3V	IOH = - 24mA	2.2	_	
		VCCB = 4.5V	VCCA = 2.7V		3.2	_	
Volb	Output LOW Voltage	VCCB = 3V	VCCA = 3V	IOL = 0.1mA	_	0.1	٧
	(A port to B port)	VCCB = 3V	VCCA = 2.3V	IOL = 12mA	_	0.4	
		Vccb = 3V	Vcca = 3V	I _{OL} = 24mA	_	0.5	
		VCCB = 4.5V	VCCA = 3V		_	0.5	

NOTE:

OPERATING CHARACTERISTICS, $T_A = 25$ °C

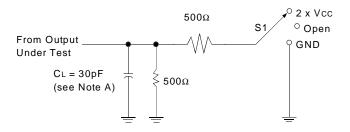
			VCCB = 5V VCCA = 3.3V	
Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Transceiver Outputs enabled A to B	CL = 0, f = 10Mhz	38	pF
CPD	Power Dissipation Capacitance per Transceiver Outputs enabled B to A		36.5	pF

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. T A = −40°C to +85°C, VccB = 3V ± 5.5V.

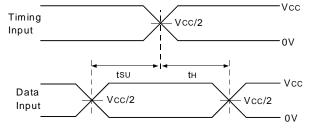
^{1.} V_IH and V_IL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. T A = −40°C to +85°C, VccA = 2.3V to 3.6V.

SWITCHING CHARACTERISTICS (1)

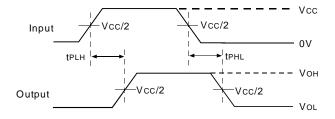
		Vcca = 2.5V±0.2V		Vcca = 2.7V to 3.6V				
		Vccb = 3	3.3V±0.3V	Vccb =	5V±0.5V	VCCB = 3.	3V to 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t PHL	Propagation Delay	1	9.4	1	6	1	7.1	ns
tplh	Ax to Bx	1	9.1	1	5.3	1	7.2	
tphl	Propagation Delay	1	11.2	1	5.8	1	6.4	ns
tplh	Bx to Ax	1	9.9	1	7	1	7.6	
tpzl	Output Enable Time	1	13	1	8.1	1	9.2	ns
tрzн	OE to Bx	1	12.8	1	8.4	1	9.9	
tpzl	Output Enable Time	1	14.5	1	9.2	1	9.7	ns
tрzн	OE to Ax	1	12.9	1	9.5	1	9.5	
tplz	Output Disable Time	1	7.1	1	5.5	1	6.6	ns
tphz	OE to Ax	1	6.9	1	7.8	1	6.9	
tplz	Output Disable Time	1	8.8	1	7.3	1	7.5	ns
tphz	OE to Bx	1	8.9	1	7	1	7.9	


NOTE:

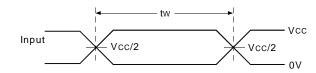
^{1.} See test circuits and waveforms. TA = -40°C to + 85°C.

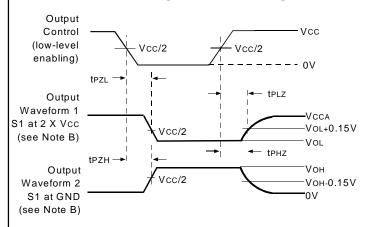

PARAMETER MEASUREMENT INFORMATION FOR A PORT

$V_{CCA} = 2.5V \pm 0.2V$ AND $V_{CCB} = 3.3V \pm 0.3V$


LOAD CIRCUIT

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

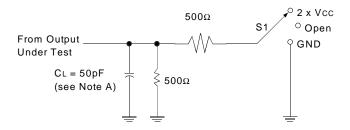

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES


TEST CONDITIONS

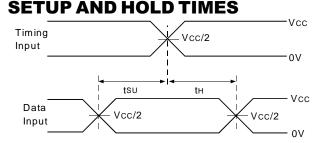
TEST	S1
tPD	Open
tplz / tpzl	2 X Vcc
tphz / tpzh	GND

VOLTAGE WAVEFORMS PULSE DURATION

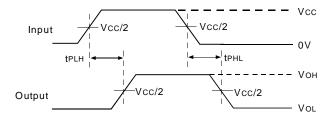
VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES


NOTES:

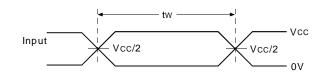
- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz; Zo = 50 Ω ; tF \leq 2ns.
- D. The outputs are measured one at a time with one transition per measurement.

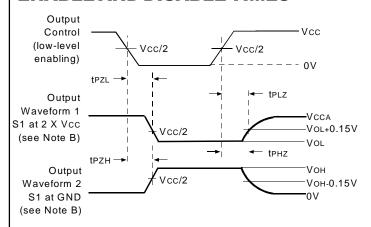

PARAMETER MEASUREMENT INFORMATION FOR B PORT

$V_{CCA} = 2.5V \pm 0.2V \text{ AND } V_{CCB} = 3.3V \pm 0.3V$


LOAD CIRCUIT

VOLTAGE WAVEFORMS

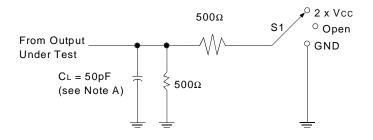

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES


TEST CONDITIONS

TEST	S1
tpD	Open
tplz / tpzl	2 X Vcc
tphz / tpzh	GND

VOLTAGE WAVEFORMS PULSE DURATION

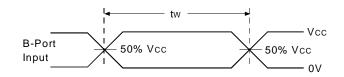
VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

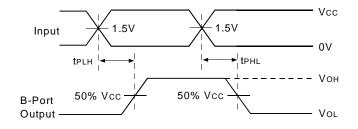

NOTES:

- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with intetnal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with intetnal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: $PRR \le 10MHz$; $ZO = 50\Omega$; $ZE \le 2nS$;
- D. The outputs are measured one at a time with one transition per measurement.

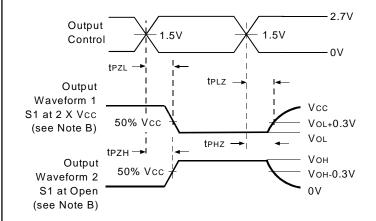
PARAMETER MEASUREMENT INFORMATION FOR B PORT

VCCA = 3.6 V AND VCCB = 5.5V


LOAD CIRCUIT

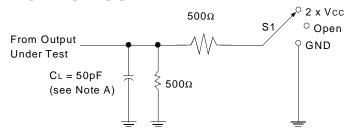

TEST CONDITIONS

TEST	S 1
tplh / tphl	Open
tplz / tpzl	2 X Vcc
tphz / tpzh	Open


VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES NONINVERTING OUTPUTS

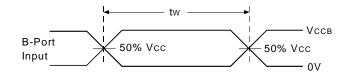
VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

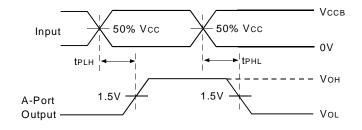

NOTES:

- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with intetnal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with intetnal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz; Zo = 50 Ω ; tr \leq 2.5ns; tr \leq 2.5ns.
- D. The outputs are measured one at a time with one transition per measurement.

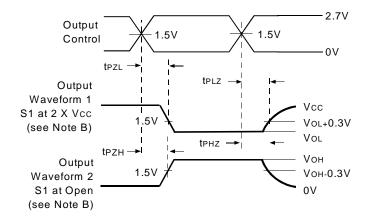
PARAMETER MEASUREMENT INFORMATION FOR A PORT

VCCA = 3.6 V AND VCCB = 5.5V


LOAD CIRCUIT

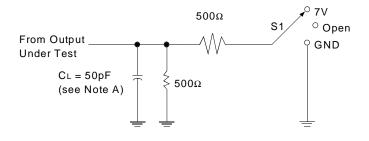

TEST CONDITIONS

TEST	S1
tplh / tphl	Open
tplz / tpzl	2 X Vcc
tPLH / tPHL tPLZ / tPZL tPHZ / tPZH	Open


VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

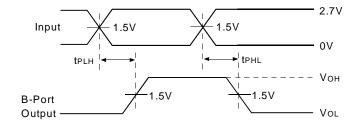

NOTES:

- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with intetnal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with intetnal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: $PRR \le 10MHz$; $ZO = 50\Omega$; $ZE \le 2.5$ ns.
- D. The outputs are measured one at a time with one transition per measurement.

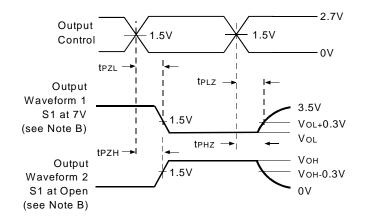
PARAMETER MEASUREMENT INFORMATION FOR A AND B PORT

VCCA AND VCCB = 3.6V

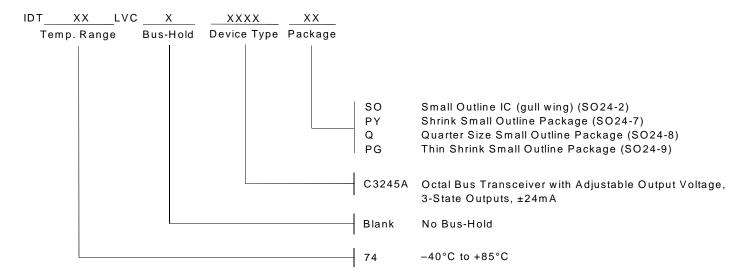
LOAD CIRCUIT


TEST CONDITIONS

TEST	S1
tplh / tphl	Open
tplz / tpzl	7V
tphz / tpzh	Open


VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES NONINVERTING OUTPUTS


VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES:

- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz; Zo = 50 Ω ; tr \leq 2.5ns, tr \leq 2.5ns.
- D. The outputs are measured one at a time with one transition per measurement.

ORDERING INFORMATION

CORPORATE HEADQUARTERS
2075 Standar Way

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116

fax: 408-492-8674 www.idt.com*