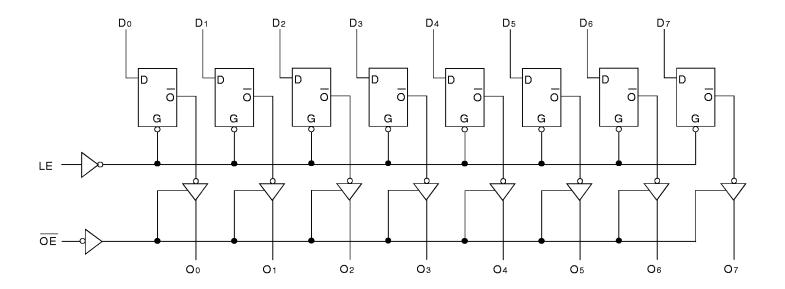


# FAST CMOS OCTAL TRANSPARENT LATCH

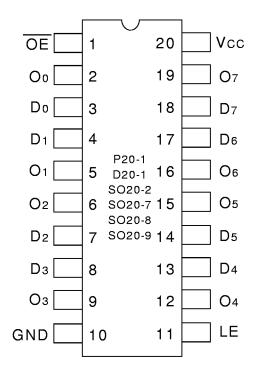
# IDT74FCT373T/AT/CT/DT


## **FEATURES:**

- Low input and output leakage  $\leq 1 \mu A$  (max.)
- Extended commercial range of -40°C to +85°C
- CMOS power levels
- True TTL input and output compatibility
  - VOH = 3.3V (typ.)
  - VoL = 0.3V (typ.)
- Meets or exceeds JEDEC standard 18 specifications
- Product available in Radiation Tolerant and Radiation Enhanced versions
- Available in PDIP, SOIC, SSOP, QSOP, and TSSOP packages
- Std., A, C and D speed grades
- High drive outputs (-15mA loн, 48mA loL)
- Power off disable outputs permit "live insertion"

## **DESCRIPTION:**

The FCT373Tis an octal transparent latch built using an advanced dual metal CMOS technology. These octal latches have 3-state outputs and are intended for bus oriented applications. The flip-flops appear transparent to the data when Latch Enable (LE) is high. When LE is low, the data that meets the set-up time is latched. Data appears on the bus when the Output Enable  $(\overline{OE})$  is low. When  $\overline{OE}$  is high, the bus output is in the high-impedance state.


# FUNCTIONAL BLOCK DIAGRAM



### **COMMERCIAL TEMPERATURE RANGE**

### SEPTEMBER 1999

## **PIN CONFIGURATION**



PDIP/ SOIC/ SSOP/ QSOP/ TSSOP/ CERPACK TOP VIEW

### COMMERCIALTEMPERATURERANGE

## ABSOLUTE MAXIMUM RATINGS<sup>(1)</sup>

| Symbol               | Rating                               | Max.            | Unit    |
|----------------------|--------------------------------------|-----------------|---------|
| VTERM <sup>(2)</sup> | Terminal Voltage with Respect to GND | –0.5 to +7      | V       |
| VTERM <sup>(3)</sup> | Terminal Voltage with Respect to GND | -0.5 to Vcc+0.5 | ۷       |
| Тѕтс                 | Storage Temperature                  | –65 to +150     | °C      |
| Ιουτ                 | DC Output Current                    | -65 to +120     | mA      |
|                      |                                      |                 | 8T-link |

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted.
- 2. Inputs and Vcc terminals only.
- 3. Outputs and I/O terminals only.

## **CAPACITANCE** (TA = $+25^{\circ}$ C, f = 1.0MHz)

| Symbol | Parameter <sup>(1)</sup> | Conditions | Тур. | Max. | Unit    |
|--------|--------------------------|------------|------|------|---------|
| CIN    | Input Capacitance        | VIN = 0V   | 6    | 10   | рF      |
| Соит   | Output Capacitance       | Vout = 0V  | 8    | 12   | pF      |
|        | -                        |            |      |      | 8T-link |

NOTE:

1. This parameter is measured at characterization but not tested.

## PIN DESCRIPTION

| Pin Names                           | Description                      |  |  |  |
|-------------------------------------|----------------------------------|--|--|--|
| DN                                  | Data Inputs                      |  |  |  |
| LE                                  | Latch Enable Input (Active HIGH) |  |  |  |
| OE Output Enable Input (Active LOW) |                                  |  |  |  |
| ON                                  | 3-State Outputs                  |  |  |  |

### **FUNCTION TABLE (1)**

|    | Outputs |    |    |
|----|---------|----|----|
| DN | LE      | OE | ON |
| Н  | Н       | L  | L  |
| L  | Н       | L  | Н  |
| X  | Х       | Н  | Z  |

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High-Impedance

### **DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE**

Following Conditions Apply Unless Otherwise Specified:

Commercial:  $T_A = -40^{\circ}C$  to  $+85^{\circ}C$ ,  $V_{CC} = 5.0V \pm 5\%$ 

| Symbol | Parameter                         | Test Conditions <sup>(1)</sup> |           |   | Typ. <sup>(2)</sup> | Max. | Unit |
|--------|-----------------------------------|--------------------------------|-----------|---|---------------------|------|------|
| Vih    | Input HIGH Level                  | Guaranteed Logic HIGH Leve     | el        | 2 | -                   |      | V    |
| Vi∟    | Input LOW Level                   | Guaranteed Logic LOW Leve      | 9         | _ | —                   | 0.8  | V    |
| Ін     | Input HIGH Current <sup>(4)</sup> | Vcc = Max.                     | VI = 2.7V | _ | _                   | ±1   | μA   |
| lı L   | Input LOW Current <sup>(4)</sup>  |                                | VI = 0.5V | _ | —                   | ±1   | μA   |
| lozн   | High Impedance Output Current     | Vcc = Max. Vo = 2.7V           |           | _ | _                   | ±1   | μA   |
| lozl   | (3-State output pins) (4)         | Vo = 0.5V                      |           | _ | _                   | ±1   |      |
| l      | Input HIGH Current                | Vcc = Max., VI = Vcc (Max.)    |           | _ | _                   | ±1   | μA   |
| Vik    | Clamp Diode Voltage               | Vcc = Min., IIN = -18mA        |           | _ | -0.7                | -1.2 | V    |
| Vн     | Input Hysteresis                  | -                              |           | _ | 200                 | _    | mV   |
| lcc    | Quiescent Power Supply Current    | VCC = Max., VIN = GND or VC    | C         | _ | 0.01                | 1    | μA   |

# **OUTPUT DRIVE CHARACTERISTICS**

| Symbol | Parameter                                     | Test Conditions <sup>(1)</sup>     |             | Min. | Typ. <sup>(2)</sup> | Max. | Unit |
|--------|-----------------------------------------------|------------------------------------|-------------|------|---------------------|------|------|
| Vон    | Output HIGH Voltage                           | Vcc = Min.                         | Iон = -8mA  | 2.4  | 3.3                 |      | V    |
|        |                                               | VIN = VIH or VIL                   | Іон = –15mA | 2    | 3                   | Ι    |      |
| Vol    | Output LOW Voltage                            | Vcc = Min. IoL = 48mA              |             | _    | 0.3                 | 0.5  | V    |
|        |                                               | VIN = VIH or VIL                   |             |      |                     |      |      |
| los    | Short Circuit Current                         | Vcc = Max, Vo = GND <sup>(3)</sup> |             | -60  | -120                | -225 | mA   |
| IOFF   | Input/Output Power Off Leakage <sup>(5)</sup> | Vcc = 0V, VIN or Vo $\leq$ 4.5V    |             | _    | _                   | ±1   | mA   |

#### NOTES:

For conditions shown as max. or min., use appropriate value specified under Electrical Characteristics for the applicable device type.
 Typical values are at Vcc = 5.0V, +25°C ambient and maximum loading.

3. Not more than one output should be shorted at one time. Duration of the short circuit test should not exceed one second.

4. The test limit for this parameter is  $\pm 5\mu$ A at TA =  $-55^{\circ}$ C.

5. This parameter is guaraneteed but not tested.

### COMMERCIALTEMPERATURERANGE

## **POWER SUPPLY CHARACTERISTICS**

| Symbol | Parameter                                         | Test                                                                                                   | Test Conditions <sup>(1)</sup>                                 |   | Typ. <sup>(2)</sup> | Max.              | Unit       |
|--------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---|---------------------|-------------------|------------|
|        | Quiescent Power Supply Current<br>TTL Inputs HIGH | Vcc = Max.<br>VIN = 3.4V <sup>(3)</sup>                                                                |                                                                | - | 0.5                 | 2                 | mA         |
| ICCD   | Dynamic Power Supply Current <sup>(4)</sup>       | Vcc = Max.<br>Outputs Open<br>$\overline{OE}$ = GND<br>One Input Toggling<br>50% Duty Cycle            | VIN = VCC<br>VIN = GND                                         | - | 0.15                | 0.25              | mA/<br>MHz |
| lc     | Total Power Supply Current <sup>(6)</sup>         | Vcc = Max.<br>Outputs Open<br>fi = 10MHz<br>50% Duty Cycle<br>OE = GND<br>LE = Vcc<br>One Bit Toggling | $V_{IN} = V_{CC}$ $V_{IN} = GND$ $V_{IN} = 3.4$ $V_{IN} = GND$ | - | 1.5                 | 3.5<br>4.5        | mA         |
|        |                                                   | Vcc = Max.<br>Outputs Open<br>fi = 2.5MHz                                                              | VIN = VCC<br>VIN = GND                                         | - | 3                   | 6 <sup>(5)</sup>  |            |
|        |                                                   | 50% Duty Cycle<br>OE = GND<br>LE = Vcc<br>Eight Bits Toggling                                          | VIN = 3.4<br>VIN = GND                                         | - | 5                   | 14 <sup>(5)</sup> |            |

NOTES:

1. For conditions shown as max. or min., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient.

3. Per TTL driven input (VIN = 3.4V); all other inputs at Vcc or GND.

4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.

5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.

6. IC = IQUIESCENT + INPUTS + IDYNAMIC

 $IC = ICC + \Delta ICC DHNT + ICCD (fCP/2 + fiNi)$ 

Icc = Quiescent Current

 $\Delta Icc$  = Power Supply Current for a TTL High Input (VIN = 3.4V)

DH = Duty Cycle for TTL Inputs High

NT = Number of TTL Inputs at DH

ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)

fi = Input Frequency

Ni = Number of Inputs at fi

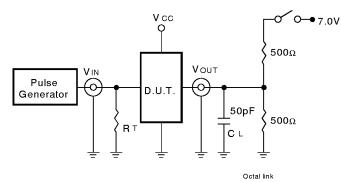
All currents are in milliamps and all frequencies are in megahertz.

### COMMERCIALTEMPERATURERANGE

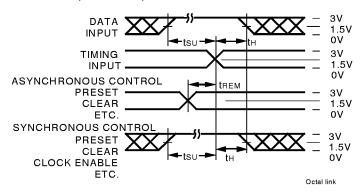
## SWITCHING CHARACTERISTICS OVER OPERATING RANGE

|              |                                      |                           | FCT                 | 373 <b>T</b> | FCT3                | 373 <b>AT</b> | FCT3                | 73 <b>CT</b> | FCT3                | 873DT |      |
|--------------|--------------------------------------|---------------------------|---------------------|--------------|---------------------|---------------|---------------------|--------------|---------------------|-------|------|
| Symbol       | Parameter                            | Conditions <sup>(1)</sup> | Min. <sup>(2)</sup> | Max.         | Min. <sup>(2)</sup> | Max.          | Min. <sup>(2)</sup> | Max.         | Min. <sup>(2)</sup> | Max.  | Unit |
| tplн<br>tpнL | Propagation Delay<br>Dn to On        | CL = 50pF<br>RL = 500Ω    | 1.5                 | 8            | 1.5                 | 5.2           | 1.5                 | 4.2          | 1.5                 | 3.8   | ns   |
| tрін<br>tрні | Propagation Delay<br>LE to ON        |                           | 2                   | 13           | 2                   | 8.5           | 2                   | 5.5          | 2                   | 4     | ns   |
| tPZH<br>tPZL | Output Enable Time                   |                           | 1.5                 | 12           | 1.5                 | 6.5           | 1.5                 | 5.5          | 1.5                 | 4.8   | ns   |
| tPHZ<br>tPLZ | Output Disable Time                  |                           | 1.5                 | 7.5          | 1.5                 | 5.5           | 1.5                 | 5            | 1.5                 | 4     | ns   |
| tsu          | Set-up Time HIGH<br>or LOW, DN to LE |                           | 2                   | _            | 2                   | _             | 2                   |              | 1.5                 | _     | ns   |
| tн           | Hold Time HIGH<br>or LOW, DN to LE   |                           | 1.5                 | _            | 1.5                 | _             | 1.5                 | _            | 1                   | _     | ns   |
| tw           | LE Pulse Width HIGH <sup>(3)</sup>   |                           | 6                   | _            | 5                   | _             | 5                   | _            | 3                   | _     | ns   |

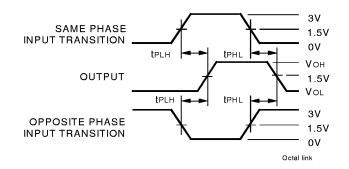
#### NOTES:


1. See test circuit and wave forms.

Minimum limits are guaranteed but not tested on Propagation Delays.
 This parameter is guaranteed but not tested.


### COMMERCIALTEMPERATURERANGE

### **TEST CIRCUITS AND WAVEFORMS**


## **TEST CIRCUITS FOR ALL OUTPUTS**

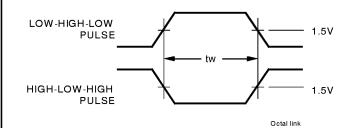


### SET-UP, HOLD, AND RELEASE TIMES

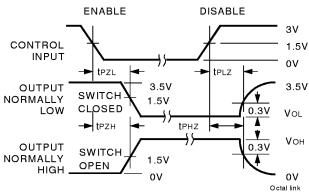


# **PROPAGATION DELAY**




# **SWITCH POSITION**

| Test            | Switch |
|-----------------|--------|
| Open Drain      |        |
| Disable Low     | Closed |
| Enable Low      |        |
| All Other Tests | Open   |
|                 | 8-link |

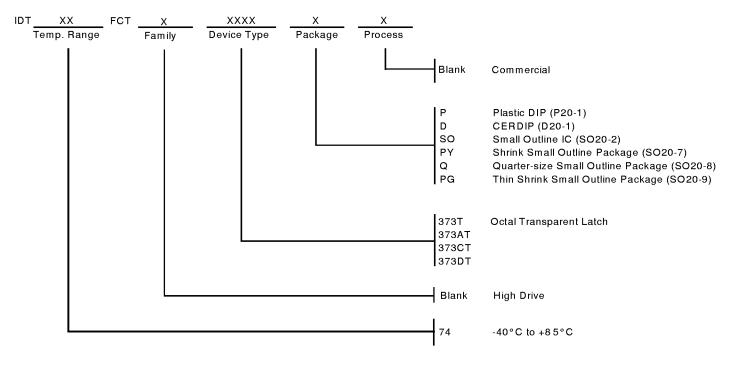

### DEFINITIONS:

- CL = Load capacitance: includes jig and probe capacitance.
- RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

## **PULSE WIDTH**



## **ENABLE AND DISABLE TIMES**




#### NOTES:

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH
- 2. Pulse Generator for All Pulses: Rate ≤ 1.0MHz; tF ≤ 2.5ns; tR ≤ 2.5ns

### COMMERCIALTEMPERATURERANGE

### **ORDERING INFORMATION**





*CORPORATE HEADQUARTERS* 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com\*

\*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.