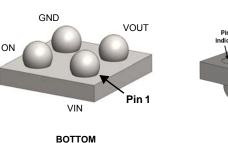
FDZ1040L Integrated Load Switch

Features

- Optimized for low-voltage core ICs in portable systems
- Very small package dimension: WL-CSP 0.8X0.8X0.5 mm³
- Current = 1.2 A, V_{IN} max = 4 V
- Current = 2 A, V_{IN} max = 4 V(Pulsed)
- $R_{DS(on)} = 80 \text{ m}\Omega \text{ at } V_{on} = V_{IN} = 4 \text{ V}$
- R_{DS(on)} = 85 mΩ at V_{on} = V_{IN} = 3.6 V
- $R_{DS(on)}$ = 90 m Ω at V_{on} = V_{IN} = 3 V
- R_{DS(on)} = 110 mΩ at V_{on} = 0.7 V, V_{IN} = 1.6 V
- R_{DS(on)} = 309 mΩ at V_{on} = 0.7 V, V_{IN} = 1 V
- RoHS Compliant



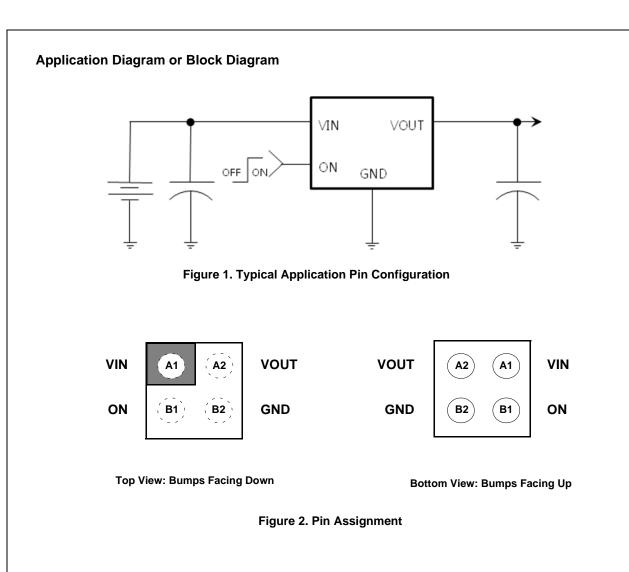
General Description

This device is particularly suited for compact power management in portable application where 1 V to 4 V input and 1.2 A output current capability are needed. This load switch integrated a level shifting function that drives a P-Channel Power MOSFET in the very small 0.8X0.8X0.5 mm³ WL-CSP package.

Applications

- Load switch
- Power management in portable applications

Pin 1 indicator


тор

Ordering Information

Part Number	Device Marking	Ball Pitch	Operating Temperature Range	Switch	🧭 Eco status	Package	Packing Method
FDZ1040L	ZL	0.4 mm	-40 to 85 ^o C	80 mΩ, P-ch FET	RoHS	0.8x0.8x0.5 mm ³ WL-CSP	Tape and Reel

M For Fairchild's definition of Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html

February 2011

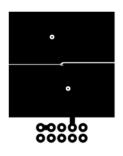
Pin Definitions

Pin #	Name	Description	
A1	V _{IN}	ply Input: Input to the load switch	
A2	V _{OUT}	itch Output: Output of the load switch	
B1	ON	ON/OFF Control Input	
B2	GND	Ground	

www.fairchildsemi.com

Pa	Min.	Max.	Units	
V _{IN} , V _{OUT} , ON to GND	-0.3	4.2	V	
OUT-Load Current (Continuous)		1.2	Α	
OUT-Load Current (Pulsed)		2	Α	
Power Dissipation @ T _A = 25 ^o C		0.9	W	
Operating Temperature Range	-40	85	°C	
Storage Temperature			150	°C
Human Body Model, JESD22-			8	kV
Electrostatic Discharge Capability	Charged Device Model, JESD22-C101		2	- KV

Recommended Operating Conditions


Parameter	Min.	Тур.	Max.	Unit
V _{IN}	1		4	V
ON	0.7		4	V
Ambient Operating Temperature, T _A	-40		85	°C

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
V _{IN}	Operation Voltage		1		4	V
V _{IL}	ON Input Logic Low Voltage	1.6 V <= V _{IN} <= 4 V 1 V <= V _{IN} <= 1.6 V			0.35 0.25	V
V _{IH}	ON Input Logic High Voltage	1.6 V <= V _{IN} <= 4 V 1 V <= V _{IN} <= 1.6 V	1 0.7			V
l _Q	Quiescent Current	I _{OUT} = 0 mA, V _{IN} = V _{ON} = 1.8 V			1	μA
I _{Q(off)}	Off Supply Current	I _{OUT} = 0 mA, V _{IN} = 1.8 V, V _{ON} = GND			1	μA
I _{SD(off)}	Off Switch Current	V _{ON} = GND, V _{OUT} = 0 V, V _{IN} = 1.8 V,			100	nA
I _{ON}	ON Input Leakage	V _{ON} = V _{IN} or GND			1	μA
R _{DS(ON)}	Static Drain-Source On-Resistance	$ \begin{array}{l} V_{ON} = V_{IN} = 4 \ V, \ I_{OUT} = 300 \ mA \\ V_{ON} = V_{IN} = 3.6 \ V, \ I_{OUT} = 300 \ mA \\ V_{ON} = V_{IN} = 3 \ V, \ I_{OUT} = 300 \ mA \\ V_{ON} = 0.7 \ V, \ V_{IN} = 1.6 \ V, \ I_{OUT} = 300 \ mA \\ V_{ON} = 0.7 \ V, \ V_{IN} = 1 \ V, \ I_{OUT} = 300 \ mA \\ V_{ON} = 3.6 \ V, \ I_{OUT} = 300 \ mA, \ T_{J} = 85 \ ^{\mathrm{o}}\mathrm{C}, \end{array} $		48 49 51 70 142 59	80 85 90 110 309 120	mΩ

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		22	μS
t _r	Turn-On Rise Time	V _{IN} = 1.6 V, V _{ON} = 0.7 V	23	μs
t _{d(off)}	Turn-Off Delay Time	C _L = 1 μF, R _L = 500 Ω	127	μs
t _f	Turn-Off Fall Time		298	μs
t _{d(on)}	Turn-On Delay Time		37	μs
t _r	Turn-On Rise Time	V _{IN} = 1 V, V _{ON} = 1.8 V C _L = 1 μF, R _L = 500 Ω	35	μs
t _{d(off)}	Turn-Off Delay Time		161	μs
t _f	Turn-Off Fall Time		544	μs
t _{d(on)}	Turn-On Delay Time		20	μs
t _r	Turn-On Rise Time	V_{IN} = 1.8 V, V_{ON} = 1.8 V C _L = 1 μF, R _L = 500 Ω	22	μs
t _{d(off)}	Turn-Off Delay Time		136	μs
t _f	Turn-Off Fall Time		272	μs
t _{d(on)}	Turn-On Delay Time		15	μS
t _r	Turn-On Rise Time	V _{IN} = 2.5 V, V _{ON} = 1.8 V	20	μs
t _{d(off)}	Turn-Off Delay Time	C _L = 1 μF, R _L = 500 Ω	168	μs
t _f	Turn-Off Fall Time		229	μs
t _{d(on)}	Turn-On Delay Time		13	μS
t _r	Turn-On Rise Time	V _{IN} = 3.3 V, V _{ON} = 1.8 V	19	μs
t _{d(off)}	Turn-Off Delay Time	$C_{L} = 1 \ \mu F, R_{L} = 500 \ \Omega$	202	μs
t _f	Turn-Off Fall Time		214	μS

Notes: 1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting suface of the drain pins. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design.

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.

a. 117 °C/W when mounted on a 1 in² pad of 2 oz copper.

b. 277 °C/W when mounted on a minimum pad of 2 oz copper.

4

FDZ1040L Integrated Load Switch

Typical Characteristics (Continued)

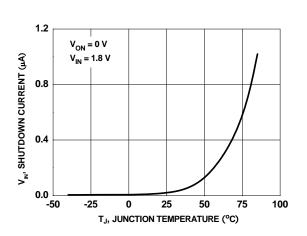


Figure 3. Shutdown Current vs. Temperature

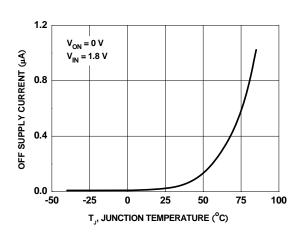


Figure 5. Off Supply Current vs. Temperature

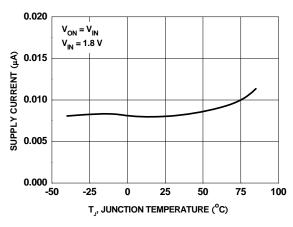


Figure 7. Quiescent Current vs. Temperature

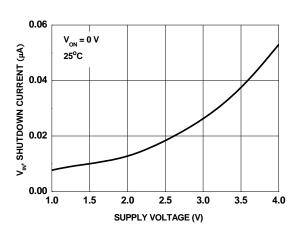


Figure 4. Shutdown Current vs. Supply Voltage

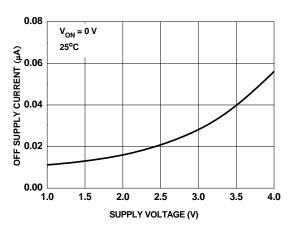


Figure 6. Off Supply Current vs. Supply Voltage

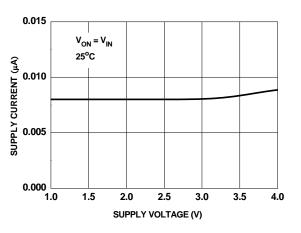


Figure 8. Quiescent Current vs.Supply Voltage

FDZ1040L Integrated Load Switch

 $V_{ON} = V_{IN}$

-40°C

3.5

4.0

3.0

50

75

10 m

100 ms

10 s

DC

100

I_{OUT} = 300 mA

Typical Characteristics (Continued) 200 200 $V_{ON} = 0.7 V$, $V_{IN} = 1 V$ I_{OUT} = 300 mA 150 150 ON RESISTANCE (m^Q) ON RESISTANCE (mΩ) 100 100 $V_{ON} = 0.7 V$, $V_{IN} = 1.6 V$ 85°C 50 50 V_{ON} = V_{IN} = 4 V 25°C 0 0 -50 -25 0 25 50 75 100 1.5 2.5 1.0 2.0 T,, JUNCTION TEMPERATURE (°C) SUPPLY VOLTAGE (V) Figure 9. R_{ON} vs. Temperature Figure 10. R_{ON} vs. Supply Voltage 250 1.0 V_{IN} = 3.3 V 25°C $C_L = 1 \mu F$ **ON INPUT LOGIC VOLTAGE (V)** 200 $R_L = 500\Omega$ 0.8 RISE/FAIL TIME (µs) t_F VIH 150 0.6 100 VIL 0.4 50 t_R 0.2 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 -50 -25 0 25 TJ, JUNCTION TEMPERATURE (°C) SUPPLY VOLTAGE (V) Figure 11. ON-Pin Threshold vs. V_{IN} Figure 12. V_{OUT} Rise and Fall Time vs.Temperature at R_L=500Ω 300 10 V_{IN} = 3.3 V $C_L = 1 \mu F$ 250 $R_L = 500\Omega$ ON/OFF DELAY TIME (µs) t_{don} ID, DRAIN CURRENT (A) 200 1 150 THIS AREA IS LIMITED BY rn 100 0.1 SINGLE PULSE T_J = MAX RATED 50 $R_{\theta JA} = 277 \,^{\circ}C/W$ t_{doff} $T_A = 25 \ ^{\circ}C$ 0.01 └─ 0.1 0 -50 -25 0 25 50 75 100 1 TJ, JUNCTION TEMPERATURE (°C) V_{DS}, DRAIN to SOURCE VOLTAGE (V) Figure 13. V_{OUT} Turn-On and Turn-Off Figure 14. Forward Bias Safe Operation Area Delay vs. Temperature at R_L =500 Ω

©2011 Fairchild Semiconductor Corporation FDZ1040L Rev.C5

10

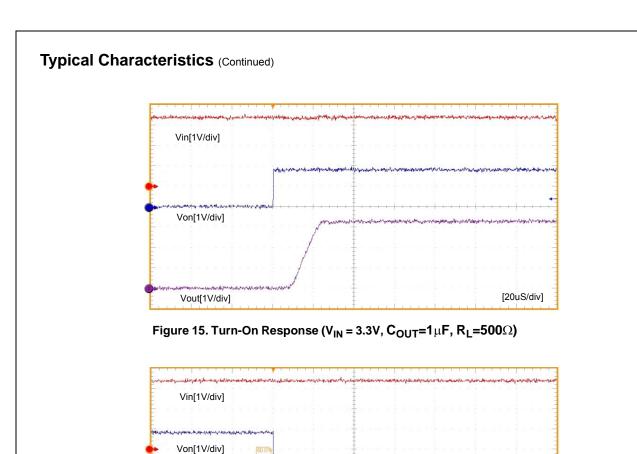


Figure 16. Turn-Off Response (VIN = 3.3V, C_{OUT}=1 \mu F, R_L=500 \Omega)

Vout[1V/div]

[200uS/div]

Operation Description

The FDZ1040L is a low $R_{DS(ON)}$ P-Channel load switch packaged in space saving 0.8x0.8 WL-CSP. The core of the device is a 80 m Ω P-Channel MOSFET and capable of functioning over a wide input operating range of 1-4 V. The ON pin, an active HI TTL compatible input that supports as low as 0.7 V of input, controls the state of the switch.

Applications Information

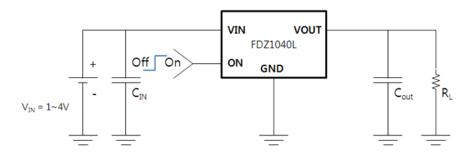
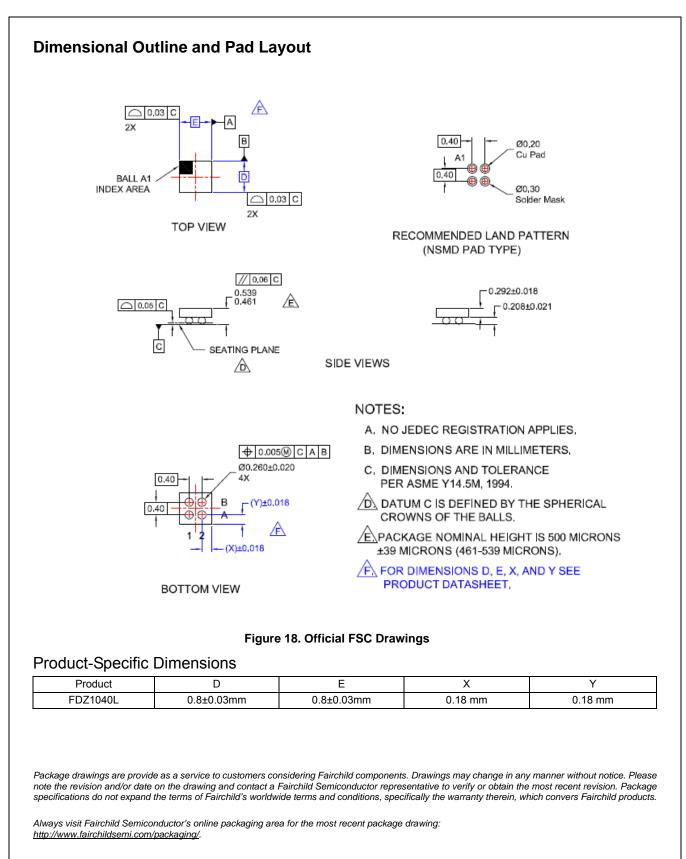


Figure 17. Typical Application

Input Capacitor

To reduce device inrush current effect, a 0.1 uF ceramic capacitor, C_{IN} is recommended close to V_{IN} pin. A higher value of C_{IN} can be used to further reduce the voltage drop experienced as the switch is turned on into a large capacitive load.

Output Capacitor


FDZ1040L switch works without an output capacitor. However, if parasitic board inductance forces Vout below GND when switching off, a 0.1 uF capacitor, C_{OUT} , should be placed between Vout and GND.

Fall Time

Device output fall time can be calculated based on RC constant of external components as follows:

$t_F = R_L \times C_{OUT} \times 2.2$

Where t_{F} is 90% to 10% fall time, R_{L} is output load and C_{OUT} is output capacitor.

For currenttape and reel specifications, visit Fairchild Semiconductor's online package area: <u>http://www.fairchildsemi.com/products/analog/pdf/mlp_tr.pdf</u> (XXX This link should be SPECIFIC to the package!)

9

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™	F-PFS™	PowerTrench [®]	The Power Franchise [®]
Auto-SPM™	FRFET®	PowerXS™	The Right Technology for Your Success™
Build it Now™	Global Power Resource SM	Programmable Active Droop™	me
CorePLUS™	Green FPS™	QFET®	puwer
CorePOWER™	Green FPS™ e-Series™	QS™	franchise
CROSSVOLT™	G <i>max</i> ™	Quiet Series™	TinyBoost™ TinyBuok™
CTL™	GTO™	RapidConfigure [™]	TinyBuck™ TinyColo™
Current Transfer Logic™	IntelliMAX™		TinyCalc™ Tinut a ni-®
DEUXPEED®	ISOPLANAR™		
Dual Cool™	MegaBuck™	Saving our world, 1mW/W/kW at a time™	TINYOPTO™ TipuDouror™
EcoSPARK [®]	MIČROCOUPLER™	SignalWise™	TinyPower™ Tim-DM/MATM
EfficentMax™	MicroFET™	SmartMax™	TinyPWM™ Tiny Mina IM
ESBC™	MicroPak™	SMART START™	TinyWire™ Tri⊏out Detect™
e	MicroPak2™	SPM®	TriFault Detect™
+	MillerDrive™	STEALTH™	TRUECURRENT™* μSerDes™
Fairchild®	MotionMax™	SuperFET [®]	µSei Des ····
Fairchild Semiconductor [®]	Motion-SPM™	SuperSOT™-3	μ
FACT Quiet Series™	OptiHiT™	SuperSOT™-6	/ SerDes"
FACT®	OPTOLOGIC®	SuperSOT™-8	UHC®
FAST®	OPTOPLANAR®	SupreMOS [®]	Ultra FRFET™
FastvCore™	®	SyncFET™	UniFET™
FETBench™	U.	Sync-Lock™	VCXTM
FlashWriter [®] *	PDP SPM™	EVETEN ®*	VisualMax™
FPS™	PDP SPM™ Power-SPM™		XS™
	FUWEI-SFINI ""	GENERAL	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Product Status	Definition
Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
-	Formative / In Design First Production Full Production