

FAN5640 — Dual High-Side Constant Current Source for High-Voltage Keypad LED Illumination

Features

- 20V Maximum Driver Input Level
- Dual Output
- 25mA Drive Capability per Channel
- Two Strings of 2-4 LEDs Each
- External Resistor Sets Maximum Current
- Fast Turn-On/Off Capability
- Low Bias Current
- SC70-6 Package
- Thermal Shutdown Protection

Applications

- Keypad Illumination
- Main Display and Sub-Display Illumination
- Cell Phones, Smart Phones
- Pocket PCs
- PDA, DSC, PMP, and MP3 Players

Description

The FAN5640 is designed to illuminate one or two strings of keypad LEDs with constant high-side current sources.

The device can drive up to four white LEDs in series at a maximum current of 25mA per channel. If the second channel is not needed, the channels can be tied together to boost output current up to 50mA.

An external resistor programs the maximum output current. Dimming can be accomplished by pulse width modulation of the enable pin or the input supply rail.

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
FAN5640S7X	-40°C to 85°C	SC70-6 2x2.2mm	Tape and Reel

Pin #	Name	Description
1	IOUT1	Output Current 1 . The programmed current I_{OUT} is sourced from this pin. If only one channel is used, IOUT1 and IOUT2 can be tied together to boost the output current. It can also be left floating or tied to pin 5.
2	GND	Ground
3	RSET	RSET . Connect a programming resistor R_{EXT} to this pin. This pin's output voltage is 0.475V when EN is HIGH. The current through the external resistor establishes the current I_{OUT} , where I_{OUT} = 275 • [0.475V / R_{EXT}].
4	EN	Enable . When HIGH, the IC applies the programmed current I_{OUT} to both IOUT1 and IOUT2. When LOW, IC enters Shutdown Mode. If pulsed, this pin modulates the output current. The minimum pulse width is determined by the speed of the turn-on circuitry. This pin contains an internal pull-down resistor of 500K Ω .
5	VIN	Input Supply . Apply 6 to 20V at this pin (see Dropout Limitations under the Application Information section).
6	IOUT2	Output Current 2 . The programmed current I_{OUT} is sourced from this pin. If only one channel is used, IOUT1 and IOUT2 can be tied together to boost the output current. It can also be left floating or tied to pin 5.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V _{EN}	Enable Voltage		-0.3	6.0	V
	V _{IN} , V _{IOUT1} , V _{IOUT2}		-0.3	22.0	V
I _{RSET}	Current Sourced by RSET			120	μA
TJ	Junction Temperature		-40	150	°C
T _{STG}	Storage Temperature		-65	150	°C
TL	Lead Soldering Temperature, 10 Seconds			260	°C
	Electrostatic Discharge Protection Level	Human Body Model	2		
LOD		Charged Device Model	2		ĸν

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{IN}	Supply Voltage	6		20	V
V_{EN}	Enable Voltage			5.5	V
I _{OUT1,} I _{OUT2}	Output Current Range Through Each String	2.5		25.0	mA
T _A	Operating Ambient Temperature Range ⁽¹⁾	-40		+85	°C
TJ	Operating Junction Temperature Range ⁽¹⁾	-40		+125	°C

Thermal Properties

Symbol	Parameter	Min.	Тур.	Max.	Unit
Θ_{JA}	Junction to Ambient Thermal Resistance ⁽¹⁾		300		°C/W

Note:

1. Junction-to-Ambient thermal resistance is a function of application and board layout. This data is measured with four-layer, 1s2p boards in accordance with JESD51- JEDEC standard. Special attention must be paid not to exceed the maximum junction temperature.

Min. Tvp. Max. Unit

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit	
Power Supp	blies	•					
V _{IN}	Input Voltage Range		6		20	V	
I	Quieseent Quiment	Measured at GND pin, V _{IN} = 20V		48	65		
IQ	Quiescent Current	Measured at GND pin, V_{IN} = 6V		44	55	μΑ	
1	Shutdown Supply Current	V_{IN} = 20V, EN = GND		8	13		
I _{SD}	Shutdown Supply Current	$V_{IN} = 6V, EN = GND$		5	8	μΑ	
V	Enable High-Level Input Voltage		1.2			V	
VEN	Enable Low-Level Input Voltage				0.4	v	
1	Enable Input Current	EN = 5V		9	15		
IEN		EN=GND		0.1	1.0	μΑ	
Regulation							
I _{LIM1}	Channel 1 Current Limit ⁽²⁾		30			mA	
I _{LIM2}	Channel 2 Current Limit ⁽²⁾		30			mA	
A 1	Output Current Acources	$2.5mA < I_{OUT} \le 5mA^{(3)}$	-15		+15	0/	
ΔI _{OUT}		$5mA < I_{OUT} \le 25mA^{(3)}$	-10		+10	70	
IMATCH	Channel-to-Channel Current Matchi	ng ⁽⁴⁾	-3		+3	%	
		V _{IN} – V _{OUT} at 90% I _{OUT} Programmed I _{OUT} = 25mA		1.80	2.50		
V _{DO}	Output Dropout voitage	V _{IN} – V _{OUT} at 90% I _{OUT} Programmed I _{OUT} = 2.5mA		0.43	0.60		
V _{REF}	Reference Voltage			475		mV	
I _{MIRROR}	Current Mirror Ratio	I _{OUT} / I _{RSET}		275			
$\Delta I_{OUT} / \Delta V_{IN}$	Power Supply Current Dependency	$V_{OUT} = V_{IN} - 2V^{(5)}$		0.5	2.0	%/V	
T _{ON}	Turn-On Time	V _{IN} =14V , I _{OUT} =12.5mA ⁽⁶⁾		5	8	μs	
	Thormal Chutdown Drotostian	Rising Temperature		150		°C	
ISD	I hermal Shutdown Protection	Hysteresis		20			

 V_{IN} = 6V to 20V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at T_A = 25°C, V_{IN} = 14V, I_{LED} = 15mA.

Notes:

If only one channel is needed, IOUT1 can be tied to IOUT2 to boost maximum current to 50mA. 2.

3. R_{EXT} resistor tolerance adds to the specification limit of the pin RSET to determine overall current accuracy.

4.

Electrical Characteristics

Matching defined as $[(I_{OUT1}-I_{OUT2})/(I_{OUT1}+I_{OUT2})] \times 100$. V_{OUT} is the total voltage drop across the LED string. 5.

Measured from EN crossing 1.8V to output current reaching 90% of target IOUT. 6.

Typical Characteristics

Unless otherwise noted, C_{IN} = 4.7µF, V_{EN} =1.8V, T_A = 25°C, white LED with V_F =3.3V at I_{OUT} =10mA.

FAN5640 — Dual High-Side Constant Current Source for High-Voltage Keypad LED Illumination

I_{out}=25mA

15

13

Figure 14. PWM Dimming on EN Pin

Figure 11. Variation of IOUT Current vs. Output Voltage

11

3.0

2.5

2.0

1.5

1.0

0.5

0.0

1

...=25mA

0.7 0.8 0.9

0.6

Typical Characteristics (Continued)

Unless otherwise noted, C_{IN} = 4.7µF, V_{EN} =1.8V, T_A = 25°C, white LED with V_F =3.3V at I_{OUT} =10mA.

Application Information

Setting the Output Current Level

An internally generated reference current is mirrored on the MOSFETs connected to the outputs IOUT1 and IOUT2 (pins 1 and 6, respectively). The current mirror ratio is 275 (typical). The voltage on pin 3 (RSET) is 0.475V in steady state; therefore, the programmed current through each of the outputs is:

$$I_{OUT} = 275 \times \frac{0.475}{R_{EXT}}$$
 EQ. 1

where R_{EXT} is the external resistor connected from pin 3 to ground. Increasing this external programming resistor reduces the output current. For the maximum rated 25mA rating of each output, the minimum value of the external resistor is:

$$R_{EXT} = 275 \times \frac{0.475}{I_{OUT}} = 275 \times \frac{0.475}{0.025} = 5.225 k\Omega$$
 EQ. 2

The LED output current accuracy is ±10% for 25mA current (see the Electrical Characteristics table). In the worst-case scenario, the calculated value of I_{OUT} can lead to an error of ±10% in the LED current. Since the tolerance of R_{EXT} also affects the LED current accuracy, a precision resistor should be chosen to have the least effect on the overall accuracy of the LED current (see Figure 12).

Floating vs. Tied Outputs

Unused outputs can be left floating. The current through is zero, regardless of the current programmed at pin 3. However, ESD protection is enhanced if the unused output pin is tied to VIN (pin 5).

If the two output pins are tied together, they can deliver a combined 50mA for the same programming resistor of $5.225 k\Omega$.

External Capacitors

Because the FAN5640 is stable without capacitors on the outputs, no capacitors are recommended. Typical input decoupling usually present on incoming supply rails should suffice in most applications. If necessary, a small input capacitance may be placed between the input pin and ground without adverse effects.

Dropout Limitations

As for any LDO regulator, there are limitations on how close the input and output rails can be to maintain regulation. The minimum difference is referred to as the dropout. The relevant information is provided in the Typical Performance curve Dropout Voltage vs. LED Current (see Figure 8). The equation for the data is:

$$V_{DO} = 0.35V + I_{OUT} \times 64\Omega \qquad EQ. 3$$

This is equivalent to an R_{DS} of 64Ω with an additional offset of 350mV. This equation is helpful in determining the minimum dissipation in the device and the lowest input voltage for a given application.

Multiple LED Displays

For portable applications, the FAN5640 can be powered from the output of any typical boost regulator. Multiple LED displays can be created with the FAN5640 powered from the output of the FAN5333, as shown in Figure 20. Note that the output voltage of the FAN5333 depends upon the number of LEDs in its output string. Being conscious of the minimum dropout requirements of the FAN5640; if three series LEDs are required to be present at its output, then the FAN5333 should have four series LEDs in its output string.

PWM Dimming

PWM dimming can be implemented by toggling the enable (EN) pin (pin 4). The recommended PWM frequency range is 100Hz to 3kHz. For example, if the rise time is 2.2µs, the actual duty cycle applied internally to the output MOSFETs is slightly less than the duty cycle of the signal applied on the enable pin. This leads to a slight non-linearity in the measured LED current. That error is:

$$\frac{\Delta I_{OUT}}{I_{OUT} \text{ set}} = -\frac{(2.2\mu \times f_{PWM})}{D_{PWM}} \times 100\%$$
 EQ. 4

For example, at a PWM frequency of 3kHz, with an applied duty cycle of 10%, the typical error is:

$$\frac{\Delta I_{OUT}}{I_{OUT SET}} = -\frac{(2.2\mu \times 3k)}{0.1} \times 100 = -6.6\%$$
 EQ. 5

So, if R_{SET} is 5.225k Ω , the theoretically expected LED current, with a PWM duty cycle of 10%, is 2.5mA. However, the actual (measured) LED current is less by 6.6%. It is (1-0.066) multiplied by 2.5mA, which is 2.335mA. In this way, the actual LED current for any PWM duty cycle and frequency can be estimated.

Input Rail Dimming

The LEDs can also be dimmed by modulating the input supply rail. See Figure 15, PWM Dimming By VIN Pin, under Typical Characteristics. A maximum frequency of 1KHz is recommended.

Power Dissipation

At an ambient temperature (T_A) , the power dissipation (P_D) and the junction temperature (T_J) are related to each other as described in the following equation:

$$T_{J} = T_{A} + P_{D} \times \Theta_{JA}$$
 EQ. 6

where:

$$P_{D} = (V_{IN} - V_{O}) \times I_{OUT_Total} + V_{IN} \times I_{Q} + \frac{V_{RSET}}{R_{EXT}} \times (V_{IN} - V_{RSET})$$

and

 $I_{OUT_{Total}} = I_{OUT1} + I_{OUT2}$.

The quiescent current (I_Q) can be found in the Electrical Characteristics section. The junction-to-ambient thermal resistance (Θ_{JA}) puts a limit on V_{O_MAX}, I_{OUT_MAX}, and the maximum dropout (V_{IN}-V_O) _{MAX}. This affects the number of LEDs used, the current used to drive them, and so on. Ensure that thermal shutdown does not occur. The formula that correlates all these variables is:

$$(V_{IN} - V_O)_{MAX} = \frac{T_{J_MAX} - T_{A_MAX}}{\Theta_{JA} \times I_{OUT_Total}}$$
EQ. 7

This should be solved for T_{J MAX} and the result verified as less than the over-temperature shutdown threshold of 150°C (typical). An additional 25°C margin is recommended to account for tolerances on the shutdown threshold; T_{J_MAX} should not exceed 125°C. The Θ_{JA} is dependent on the surrounding PCB layout and can be around 300°C/W for an SC-70 package. This can be improved by providing a heat sink of surrounding copper ground on the PCB. The addition of backside copper with vias, stiffeners, and other enhancements can reduce this value. The heat contributed by the dissipation of other devices located nearby must be included in design considerations. Once the limiting parameters in these two relationships have been determined, the design can be modified to ensure that the device remains within specified operating conditions. If overload conditions are not considered, it is possible for the device to enter a thermal cycling loop, in which the circuit enters a shutdown condition, cools, re-enables, and again overheats and shuts down repeatedly due to an unmanaged fault condition.

LED Selection

The FAN5640 is designed to drive 2-4 LEDs or a higher number of monochrome LEDs. The maximum number of LEDs per channel can be calculated as a function of V_{IN} and the sum of the forward voltage of each LED at the maximum specified current. The minimum number of LEDs driven by FAN5640 is the result of calculating the maximum power dissipated by the IC in the given operating conditions. The forward voltage of LEDs depends upon type of LEDs and the manufacturer. In terms of maximum number of LEDs and LED current, refer to the Dropout Voltage vs. LED Current graph in the Typical Characteristics (*see Figure 8*).

Manufacturer	Part	Website
HARVATEK	HT-T169TW	www.harvatek.com
NICHIA	NSSW1087	www.nichia.com

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>.

FAN5640 — Dual High-Side Constant Current Source for High-Voltage Keypad LED Illumination

TRADEMARKS The following includes registe	red and unregistered trademarks and s	service marks, o	wned by Fairchild Semiconductor and/or its glob	al subsidiaries, and is not
			DevuerTree eh®	The Dewer Franking®
	F-PFS™ corct®		Power I rench	the Power Franchise
	Clobal Dower Recourses SM		Programmable Active Droop™	power.
	GreenBridge™		OFET®	franchise
			OSTM	TinyBoost™
	Green FPS™ e-Series™		Ouiet Series™	TinyBuck™
	G <i>m</i> ax™		RapidConfigure™	TinyCalc™
CROSSVOLT	GTO™			TinyLogic
	IntelliMAX™		South a supported destablished at a time TH	TINYOPTO**
Current Transfer Logic™	ISOPLANAR [™]		Saving our world, 1mvv/vv/kvv at a time **	TinyPower™ TinyPower™
DEUXPEED®	Making Small Speakers So	ound Louder	Signalivise	
Dual Cool™	and Better™			Trop SiCT
EcoSPARK®	MegaBuck™		Solutions for Your Success™	TriFault Detect™
EfficientMax™	MICROCOUPLER™		SPM [®]	TRUECURRENT®*
ESBC™	MicroFET		STEALTH™	µSerDes™
	MicroPak [™]		SuperFET®	
airchild [®]	MilcroPak2 [™]		SuperSOT™-3	SerDes
Fairchild Semiconductor®	MillerDrive		SuperSOT™-6	UHC®
FACT Quiet Series™	Motion Max**		SuperSOT™-8	Ultra FRFET™
FACT®	motion-SPM-		SupreMOS®	UniFET™
FAST®	OptoHiTM		SyncFET™	VCX™
FastvCore™	OPTOLOGIC®		Sync-Lock™	VisualMax™
ETBench™	OPTOPLANAR®			VoltagePlus™
FlashWriter®*				XS™
PS™				
OR CIRCUIT DESCRIBED H	EREIN; NEITHER DOES IT CONVEY EXPAND THE TERMS OF FAIRCHILE	ANY LICENSE	UNDER ITS PATENT RIGHTS, NOR THE RIGHE TERMS AND CONDITIONS, SPECIFICALLY	TS OF OTHERS. THESE THE WARRANTY THEREIN,
	RODUCTS.			
FAIRCHILD'S PRODUCTS A EXPRESS WRITTEN APPRO	RE NOT AUTHORIZED FOR USE AS	S CRITICAL CO	MPONENTS IN LIFE SUPPORT DEVICES OF ATION.	R SYSTEMS WITHOUT THE
As used herein:				
 Life support devices 	or systems are devices or system	ns which, (a)	2. A critical component in any componer	nt of a life support, device, or
sustain life and (c) w	bose failure to perform when pror	b) support or	cause the failure of the life support dev	de reasonably expected to
accordance with instru reasonably expected t	uctions for use provided in the labe to result in a significant injury of the	eling, can be user.	safety or effectiveness.	
ANTI-COUNTERFEITING	POLICY			
airchild Semiconductor Corp ander Sales Support.	oration's Anti-Counterfeiting Policy. Fa	airchild's Anti-Co	interfeiting Policy is also stated on our external v	website, www.fairchildsemi.com,
Counterfeiting of semiconduc	tor parts is a growing problem in the inc	dustry. All manuf	acturers of semiconductor products are experied	ncina counterfeiting of their
parts. Customers who inadve	rtently purchase counterfeit parts expe	erience many pro	blems such as loss of brand reputation, substan	dard performance, failed
pplications, and increased co	ost of production and manufacturing de	elays. Fairchild is	taking strong measures to protect ourselves an	d our customers from the
proliferation of counterfeit part	s. Fairchild strongly encourages custor	mers to purchas	e Fairchild parts either directly from Fairchild or f	rom Authorized Fairchild
Jistributors who are listed by	country on our web page cited above.	Products custon	ners buy either from Hairchild directly or from Au	full range of up to date technical
are genuine parts, nave full the	bild and our Authorized Distributors wi	iuarus ior nandlin ill stand behind a	g and storage and provide access to FalfChild's Il warranties and will appropriately address any	warranty issues that may arise
airchild will not provide any v problem and encourage our o	varranty coverage or other assistance to sustomers to do their part in stopping th	for parts bought	from Unauthorized Sources. Fairchild is commit ying direct or from authorized distributors.	ted to combat this global
RODUCT STATUS DEFU				
RODUCI STATUS DEFI	Should			
Definition of Terms				
Datasheet Identification	Product Status		Definition	
Advance Information	Formative / In Design Datashee in any ma	et contains the anner without n	design specifications for product developmen otice.	nt. Specifications may change
Preliminary	First Production Datashee	et contains preli	minary data; supplementary data will be pub	blished at a later date. Fairchild

Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I61

No Identification Needed

Obsolete

Full Production

Not In Production

changes at any time without notice to improve the design.

Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make