
Smart Internet
Appliance
Processor
(SIAP™)

AT75C1210
G.723.1 –
Voice
Processing
Software
Module

Rev. 1777A–11/01
Features
• Software Module Dedicated to Voice Processing
• Optimized for the AT75 Series Smart Internet Appliance Processor (SIAP™)
• Includes Several Run-time Configurable Stand-alone Algorithms

– G.723.1 Dual-rate Vocoder (5.3 Kbps/6.4 Kbps)
– VAD/CNG Silence Compression (Annex A of G.723.1)
– G.711 µ-law and A-law Compression (64 Kbps)
– Arbitrary Tone Generator

• ITU-T G.723.1 and G.711 Standard-compliant
• Available with a uClinux® Device Driver

Overview
The AT75C1210 G.723.1 Voice Processing Software Module is designed to run on the
OakDSPCore® subsystem of the AT75 series Smart Internet Appliance Processor. It
implements commonly-used voice processing algorithms:

• a low bit-rate G.723.1 vocoder for multimedia communication

• a silence compression algorithm to efficiently handle periods of silence during
communication

• a high bit-rate voice compression algorithm

• an arbitrary tone generator that can be used to generate any frequency during a
programmable duration

All these algorithms have a number of parameters which can be programmed at run
time. These parameters modify the behavior of the DSP algorithms in such a manner
that they comply with the applicable standards under most situations. They also allow
the AT75C to cope with many non-standard situations often encountered on private
telephone networks.

The AT75C1210 takes advantage of the AT75 mailbox to exchange data with the on-
chip ARM7TDMI® core. The organization of the data communication channel makes it
easy to integrate the AT75C1210 interface into most operating systems.

For developers using uClinux, a specific device driver is supplied. It allows the exten-
sion of uClinux capabilities to the complete functionality of the AT75C1210 module in a
seamless manner.

This document is made up of three sections:

1. a functional description of the supported algorithms

2. a description of the low level software interface

3. a description of the uClinux device driver

Mixing low-level and driver-level programming should be avoided.
1

Functional
Description

A functional block diagram of the AT75C1210 G.723.1 module is given in Figure 1.

The different algorithms are independent. They can be enabled, disabled or programmed
individually.

Figure 1. Block Diagram

G.723.1 Dual Rate
Vocoder

This algorithm can be used for compressing the speech or other audio signal components of a
multimedia service at a very low bit rate. This coder has two bit rates associated with it: 5.3
and 6.4 Kbps. The higher bit rate has better quality; it is based on Multi Pulse Maximum Likeli-
hood Quantization (MP-MLQ) technique. The lower bit rate gives good quality and provides
system designers with additional flexibility; this rate is based on an Algebraic Code Linear Pre-
diction (ACELP) technique.

This coder operates on 30 ms speech frames of 16-bit linear PCM samples (sampling fre-
quency is 8 kHz). An algorithmic delay of 7.5 ms is to be taken into account before getting an
encoded voice data frame. That leads to a total delay of 37.5 ms. Resulting encoded frames
are 20 bytes long for 5.3 Kbps rate and 24 bytes long for 6.4 Kbps rate. The encoding rate can
be chosen by means of a configuration command sent to the DSP (see “Request Notification
Messages” on page 7).

VAD/CNG Voice Activity Detection (VAD) and Comfort Noise Generator (CNG) algorithms are designed
to work hand-in-hand with G.723.1 vocoder. Silence compression techniques are used to
reduce the transmitted bit rate during silent intervals of speech. The VAD side detects those
silent intervals. CNG is used to produce a noise that matches the actual background noise.
CNG uses information provided by VAD to encode silent intervals into Silence Insertion
Descriptor (SID) frames that are 4 bytes long. It also re-synthesizes 16-bit linear PCM samples
of background noise with a SID frame input. The VAD/CNG feature can be enabled or not by
means of a configuration command sent to the DSP (see “Request Notification Messages” on
page 7).

G.711 µ-law and A-
law Voice
Compression

µ-law and a-law are logarithmic compression techniques applied to speech signals. They are
done by simple operations that give no delay and excellent quality of speech. However, the bit
rate is very high (each 16-bit linear PCM speech sample gives an 8-bit compressed sample
leading to 64 Kbps) making this feature useful only for broadband data networks. The com-
pression/decompression algorithm can be chosen by means of a configuration command send
to the DSP (see “Request Notification Messages” on page 7).

Tone Generator The tone generation task generates a pure sine wave with programmable frequency, ampli-
tude and duration.

Micro

G.723.1 Encoder +
VAD/CNG

G.711 µ-law/a-law
Compression

Tone Generation

Speaker

G.711 µ-law/a-law
Decompression

G.723.1 Decoder + CNG
2 AT75C1210 G.723.1
1777A–11/01

AT75C1210 G.723.1
Low-level
Interface

This section describes how the AT75C1210 software is uploaded into the DSP subsystem pro-
gram memory. It also describes how the application software running on the ARM® and the
AT75C1210 running on the DSP Subsystem exchange information through the mailboxes.

This section assumes an in-depth knowledge of the ARM/DSP Subsystem interface mailbox
system.

Voice Module
Upload

While the DSP subsystem is held in reset, its program memory is made visible in the ARM
memory space. This allows the ARM application to write a binary image of the DSP software
very easily.

When the DSP subsystem is taken out of reset, its program memory is switched from the ARM
memory space back to the DSP program space just before the first instruction is fetched.

This process is illustrated in Figure 2.

Figure 2. Voice Module Upload

Upload Process A typical DSP program uses a number of initialized variables. Typically, the initial values are
stored in the program space, and copied into their RAM location by the DSP start-up routine.
This leads to the following statements:

• Just after the boot routine has initialized the variables, the DSP subsystem exhibits high
redundancy since the same values exist in both program and data memories.

• The initial values stored in the program memory waste space and are not used during
operation.

• To improve the program memory usage, the software is loaded in two consecutive steps.

• A small data initialization program is first loaded and executed. This program just initializes
the X- and Y-RAM to the values expected by the audio decoder software. When the
initialization is done, the program sends a DATA_INIT_DONE status message to the ARM
application through the status mailbox.

• Then, the DSP subsystem is put in reset and the program itself is loaded. This code has
no data init start-up routine. It assumes the RAMs are already initialized, which saves
program space. When the software is ready to work, it sends a SW_INIT_DONE status
message through the status mailbox.

ASB

ARM
Core

Reset

Oak
Subsystem

SIAP_MDRB

X-RAM Y-RAM

P-Bus

OakB Program
Memory
3
1777A–11/01

The mailbox operation and status messages are described in the section “Mailbox Usage” on
page 5.

Binary Image Format When the system is idle, the AT75C1210 module is stored in the ARM memory space, possi-
bly in non volatile memory. The module contains the data initialization code, the application
code, and additional formatting data. The various fields of the AT75C1210 binary image are
described in Table 1.

DPMB
Configuration

The DPMB is programmed in configuration 2 (as defined in the AT75 Series Datasheet) and
gives the configuration shown in Table 2. All the mailboxes allow read/write access from both
sides. Arbitration is done using the semaphores.

Note: 1. Base address is 0xfa000000 for OakA, 0xfb000000 for OakB.

Table 1. Binary Image Fields

Field Name Offset from Start of Field (Bytes) Length (Bytes) Description

INIT_OFFSET 0 4 Defines the position of the data initialization code from
the beginning of the module image.

INIT_LENGTH 4 4 Defines the length of the data initialization code (16-bit
words). Valid between 0 and 24576.

SW_OFFSET 8 4 Defines the position of the audio decoder program from
the beginning of the module image.

SW_LENGHTH 12 4 Defines the length of the audio decoder code (16-bit
words). Valid between 0 and 24576.

INIT_CODE 16 2*INIT_LENGTH Binary code of the data initialization program.

SW_CODE 16 + 2*INIT_LENGTH 2*SW_LENGTH Binary code of the application program.

Table 2. DPMB Configuration

Mailbox # Offset from Base(1) Length Direction Semaphore Address(1) Usage

0 0x000 0x80 ARM -> Oak 0x200 Unused

1 0x080 0x80 ARM <- Oak 0x204 Unused

2 0x100 0x40 ARM -> Oak 0x208 DSP memory access

3 0x140 0x40 ARM -> Oak 0x20C Unused

4 0x180 0x20 ARM -> Oak 0x210 Unused

5 0x1A0 0x20 ARM <- Oak 0x214 Unused

6 0x1C0 0x20 ARM -> Oak 0x218 Request notification

7 0x1E0 0x20 ARM <- Oak 0x21C Status notification
4 AT75C1210 G.723.1
1777A–11/01

AT75C1210 G.723.1
Mailbox Access

ARM-to-Oak
Mailboxes

Before accessing the ARM-to-Oak mailboxes, the ARM must check that the corresponding
semaphore is cleared to 0. Then it can read or write the mailbox data. When the data access is
done, it must set the semaphore to 1 to notify the Oak that new data has arrived.

Oak-to-ARM
Mailboxes

The ARM is notified that new data is available in a mailbox when the corresponding sema-
phore is raised to 1, possibly triggering an interrupt. Then the ARM can access the mailbox.
When the access is finished, the ARM must clear the semaphore to release the mailbox.

Mailbox Usage This section describes the specific purpose of each mailbox. The exchanged information is
formatted in structured messages. The message format and semantics are described in sec-
tions “Request Notification Messages” on page 7 and “Status Notification Messages” on page
11.

Mailbox 0: TX
Encoded Voice Data

Used by the ARM to provide to the OAK encoded speech frames (either G.711 data or
G.723.1 data).

Mailbox 1: RX
Encoded Voice Data

Used by the ARM to get from the OAK encoded speech frames (either G.711 data or G.723.1
data).

Mailbox 2: Oak
Memory Access

The ARM has the ability to send requests to read or write any location of the DSP memories,
either in program or data space. This is useful for two purposes:

• DSP software debug

• Programming of the DSP peripherals under the ARM application control

Mailbox 6: Request
Notification

This mailbox is used by the ARM to pass requests to the DSP. These requests trigger specific
tasks in the DSP software. For example, request notification messages are used to start or to
stop the telephony algorithms.

Mailbox 7: Status
Notification

This mailbox is used by the DSP software to send status information. For example, a status
notification message is sent by the DSP software at the end of the data initialization to notify
the ARM application that the data has been initialized.

TX/RX Encoded
Voice Data

The first two mailboxes deal with speech compressed frames. Each byte sent through the
mailbox is put in a 16-bit word where the low byte is the original byte value and in the high byte
are flags.

Assuming the data to be transmitted is in “char buf[0..N-1]”, it is formatted in the mailbox as
shown in Table 3 (otherwise the frame is ignored).

Note: 1. With FRAME_START = 0x8000 and FRAME_END = 0x4000

Delivered frames are of variable length:

• The length is encoded within the first two bits of buf[0] for G.723.1:

– buf[0] & 0x3 = 0 -> 24 bytes at a rate of 6.3 Kbits per second

– buf[0] & 0x3 = 1 -> 20 bytes for a rate of 5.3 Kbits per second

– buf[0] & 0x3 = 2 -> 4 bytes for silence compression frames

Table 3. Speech Frame Format(1)

Word 0 ... Word i (i = 1... N - 2) ... Word N - 1

FRAME_START|buf[0] ... 0x0000|buf[i] ... FRAME_END|buf[N - 1]
5
1777A–11/01

– buf[0] & 0x3 = 3 -> 1 byte: it follows a 4-byte frame while the silence scheme is
unchanged

• If the system is in G.711, mode frames are 64 bits long, independent of the contents of
buf[0].

Oak Memory
Access

The ARM has the ability to send requests to read or write any location of the Oak memories,
either in program or data space. To achieve this, the mailbox 2 is divided into four fields:

• Command field (mailbox base + 0): This is a request ID that tells what kind of operation is
to be performed. Valid codes are:

– 0x0001: Program memory read

– 0x0002: Program memory write

– 0x0003: Data memory read

– 0x0004: Data memory write

• Address field (base + 1 16-bit word): Should be written with the address location to be
accessed. This is the value of the address as it is seen by the Oak.

• Length field (base + 2 16-bit words): Should be written with the number of consecutive
locations to access.

• Data field (base + 3 16-bit words and following): For write access, should be filled with the
values to write. For read access, contains the read values requested by the previous
command.

Example of use: Write 0x1234 into data location 0xabcd of the 0akB:

1. Wait for *(0xfb000208) == 0, i.e., the semaphore is cleared

2. *(0xfb000100) = 0x0004 // data write command

3. *(0xfb000102) = 0xabcd // this is the address

4. *(0xfb000104) = 0x0001 // only one word to write

5. *(0cfb000106) = 0x1234 // this is the value

6. *(0xfb000208) = 1 // notify the OakB

Example of use: Read data locations 0xabcd and 0xabce from OakB:

1. Wait for *(0xfb000208) == 0, i.e. the semaphore is cleared

2. *(0xfb000100) = 0x0004 // data write command

3. *(0xfb000100) = 0x0003 // data read command

4. *(0xfb000102) = 0xabcd // this is the first address to read

5. *(0xfb000104) = 0x0002 // two words to read

6. *(0xfb000208) = 1 // notify the OakB

7. Wait for the semaphore to go back to 0.

8. Read 0xfb000106 and 0xfb000108 to get the requested values.
6 AT75C1210 G.723.1
1777A–11/01

AT75C1210 G.723.1
Request
Notification
Messages

Request messages are used by the ARM to trigger specific tasks running on the DSP. These
messages are always formatted in the same way. Figure 3 describes this format.

Figure 3. Request Notification Message Format

A message always begins with a LENGTH field. This field contains the number of words of the
message, excluding the LENGTH field itself.

The REQUEST_ID field is uniquely defined to designate the type of request. Each request can
be followed by a variable but well-defined number of PARAMETER fields. These fields contain
additional data needed to handle the request.

The description of the supported request messages is listed inTable 4. It is forbidden for the
ARM application to issue unsupported messages. However, should the ARM application issue
an unsupported or malformed request, the Oak software must recover gracefully.

G.723.1 Configuration
Request

This message is sent to the Oak before enabling any G.723 operation.

Mailbox Base Address

LENGTH Words

LENGTH

REQUEST_ID

PARAMETER[0]

...

PARAMETER[LENGTH - 2]

unused...

16 Bits

Table 4. G.723.1 Configuration Request

Word 0 0x0006 Message Length = 0x0006

Word 1 0x0400 Request ID = 0x0400

Word 2 WORKRATE Work rate for encoding, valid values:
0: 6.3 Kbits/s rate
1: 5.3 Kbits/s rate

Word 3 WORKRATED Work rate for decoding, valid values:
0: 6.3 Kbits/s rate

1: 5.3 Kbits/s rate
default 1
Note: This parameter is automatically set to
the G.723 algorithm. In all cases this
parameter needs to be initialized.

Word 4 USEVX 0: disable VAD

1: enable VAD

Word 5 MICR_GAIN

= 0x1000 * 10E(dB/20)

Gain for the microphone input

Valid: 0x0040 (- 36 dB) to 0x8000 (+18 dB)

Word 6 SPKR_GAIN

= 0x1000 * 10E(dB/20)

Gain for the speaker output

Valid: 0x0040 (-36 dB) to 0x8000 (+18 dB)
7
1777A–11/01

G.723.1 Decoding
Start Request

The G.723.1 decode task starts as soon as the DSP unit receives this request.

G.723.1 Decoding
Stop Request

The G.723.1 decode task is stopped as soon as this request is received by the DSP unit.

G.723.1 Encoding
Start Request

The G.723.1 encode task starts as soon as the DSP unit receives this request.

G.723.1 Encoding
Stop Request

The G.723.1 encode task is stopped as soon as this request is received by the DSP unit.

G.711 Configuration
Request

Table 5. G.723.1 Decoding Start Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0401 Request ID = 0x0401

Table 6. G.723.1 Decoding Stop Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0402 Request ID = 0x0402

Table 7. G.723.1 Encoding Start Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0403 Request ID = 0x0403

Table 8. G.723.1 Encoding Stop Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0404 Request ID = 0x0404

Table 9. G.711 Configuration Request

Word 0 0x0005 Number of words of the message

Word 1 0x0401 Request ID

Word 2 LAW Selected Law for compression. Valid values:
0: µ-law

1: a-law
default 0
8 AT75C1210 G.723.1
1777A–11/01

AT75C1210 G.723.1
This message is sent to the Oak before enabling any G.711 operation

G.711 Decompression
Start Request

The G.711 decompression task starts as soon as the DSP unit receives this request.

G.711 Decompression
Stop Request

The G.711 decompression task is stopped as soon as the DSP unit receives this request.

G.711 Compression
Start Request

The G.711 compression task starts as soon as the DSP unit receives this request.

G.711 Compression
Stop Request

The G.711 compression task is stopped as soon as the DSP unit receives this request.

Word 3 LAWD Selected Law for decompression. Valid
values:
0: µ-law
1: a-law

default 0

Word 4 MICR_GAIN

= 0x1000 * 10E(dB/20)

Gain for microphone input

Valid: 0x0040 (-36 dB) to 0x8000 (+18 dB)

Word 5 SPKR_GAIN

= 0x1000 * 10E(dB/20)

Gain for the speaker output

Valid: 0x0040 (-36 dB) to 0x8000 (+18 dB)

Table 9. G.711 Configuration Request (Continued)

Table 10. G.711 Decompression Start Request

Word 0 0x0001 Number of words of the message

Word 1 0x0411 Request ID

Table 11. G.711 Decompression Stop Request

Word 0 0x0001 Number of words of the message

Word 1 0x0412 Request ID

Table 12. G.711 Compression Start Request

Word 0 0x0001 Number of words of the message

Word 1 0x0413 Request ID

Table 13. G.711 Compression Stop Request

Word 0 0x0001 Number of words of the message

Word 1 0x0414 Request ID
9
1777A–11/01

Tone Generation
Configuration Request

Example: 0x0007 0x0801 0x5A82 0x5A83 0x4000 0x0080 0x0080 0x0003

This message configures the generator to emit a 1024 Hz tone 6 dB below the reference level.
The tone is emitted as soon as the DSP unit receives the request. After 128 ms of signal and
128 ms of silence, a tone generation done status message is emitted.

Tone Generation Start
Request

The tone starts as soon as the DSP unit receives this request.

A tone generation configuration request (request ID 0x0800) should be issued before the tone
generation start request is sent. If not, the behavior of the tone generator is unpredictable.

Tone Generation Stop
Request

The tone stops as soon as the DSP unit receives this request. This request can be used to
stop an unlimited tone generation, or to halt the generator before the predefined duration has
elapsed (early termination).

Table 14. Tone Generation Configuration Request

Word 0 0x0007 Message Length = 0x0007

Word 1 0x0800 Request ID = 0x0800

Word 2 32768 * cos (pi * TONE_FREQ/4000) Words 2 and 3 define the frequency of the
generated tone

Word 3 32768 * cos (pi * TONE_FREQ/4000)

Word 4 TONE_LEVEL = 32768 * 10E(dB/20) Level of the generated tone

Word 5 TONE_DURATION Duration of the generated tone in
milliseconds

0x0000 means unlimited duration

Word 6 SILENCE_DURATION Duration of the silence following the tone in
milliseconds
0x0000 means unlimited duration

Word 7 TONE_START Bit 0: 0 causes the generator to wait for a
tone generation start request (request ID
0x0801) before the tone is generated

1: the generation starts immediately
Bit 1: 0: the tone is added to all other signals
emitted on the speaker
1: all other signals are blocked while the tone
is generated

Table 15. Tone Generation Start Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0801 Request ID = 0x0801

Table 16. Tone Generation Stop Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0802 Request ID = 0802
10 AT75C1210 G.723.1
1777A–11/01

AT75C1210 G.723.1
Status Notification
Messages

Status messages are used by the Oak to inform the ARM application that a specific event has
occurred, or to respond to an earlier request. These messages are always formatted in the
same way. Figure 4 describes this format.

Figure 4. Status Notification Message Format

A status message always begins with a LENGTH field. This field contains the number of words
of the message, excluding the LENGTH field itself.

The STATUS_ID field is uniquely defined to designate the type of status. Each status can be
followed by a variable but well-defined number of PARAMETER fields. These fields contain
additional status information.

The description of the supported status messages is listed below. It is forbidden for the Oak
program to issue unsupported status messages. However, should the Oak program issue an
unsupported or malformed status message, the ARM application must recover gracefully.

Data Initialization
Status

This status message is issued when the data initialization program has completed the data ini-
tialization process. The Oak can be safely reset and reloaded with the voice module precisely
named.

Voice Module
Initialization Status

This status message is issued when the audio decoder has finished initializing itself and is
ready to accept request messages. The ARM should not issue any request messages before
this status message has been received.

Mailbox Base Address

LENGTH Words

LENGTH

STATUS_ID

PARAMETER[0]

...

PARAMETER[LENGTH - 2]

unused...

16 Bits

Table 17. Data Initialization Status

Word 0 0x0006 Message length = 0x0006

Word 1 DATA_INIT_DONE_ID Status ID = 0x8001

Word 2 VERSION_MONTH Version information:
Contains the date of the generation of the
binary file of the DSP.

Word 3 VERSION_DAY

Word 4 VERSION_YEAR

Word 5 VERSION_HOUR

Word 6 VERSION_MIN

Table 18. Voice Module Initialization Status

Word 0 LENGTH Message length = 0x0001

Word 1 SW_INIT_DONE_ID Status ID = 0x8002
11
1777A–11/01

Bad Format Status The Oak issues this message when it has received a request message in which the LENGTH
field is not compatible with the request type. The OakB ignores the corresponding malformed
request.

Unknown Request
Status

The Oak issues this message when it has received a request message with an unsupported
request ID field.

Bad Parameter Status The Oak issues this message when it has received a request message with a parameter hav-
ing an invalid value.

Bad Speech Frame
Status

This status is issued when a speech frame message does not have the correct header or
footer

Underrun Status This status is issued when a speech frame takes too long to arrive, thus causing a discontinu-
ity in the speech stream.

To avoid flooding the ARM with underrun status bursts, this kind of message should be issued
at most once per compressed frame period, as long as the underrun state is encountered.

Table 19. Bad Format Status

Word 0 LENGTH Message length = 0x0002

Word 1 BAD_FORMAT_ID Status ID = 0x80FF

Word 2 BAD_FORMAT_VALUE Contains the request ID of the malformed
request message.

Table 20. Unknown Request Status

Word 0 LENGTH Message length = 0x0002

Word 1 UNKNOWN_REQ_ID Status ID = 0x80FE

Word 2 UNKNOWN_REQ_VALUE Contains the request ID of the malformed
request message.

Table 21. Bad Parameter Status

Word 0 LENGTH Message length = 0x0002

Word 1 UNKNOWN_REQ_ID Status ID = 0x80FD

Word 2 UNKNOWN_REQ_VALUE Contains the request ID of the malformed
request message.

Table 22. Bad Speech Frame Status

Word 0 LENGTH Message length = 0x0001

Word 1 BAD_FRAME_ID Request ID = 0x84FF

Table 23. Underrun Status

Word 0 LENGTH Message length = 0x0001

Word 1 UNDERRUN_ID Status ID = 0x84FD
12 AT75C1210 G.723.1
1777A–11/01

AT75C1210 G.723.1
G.723.1 Decoding
Stopped Status
Message

This status is issued if the decode task was stopped by a G.723.1 decode stop request
(request ID 0x0402).

G.723.1 Encoding
Stopped Status
Message

This status is issued if the decode task was stopped by a G.723.1 encode stop request
(request ID 0x0404).

G.711 Decompression
Stopped Status
Message

This status is issued if the decompression task was stopped by a G.711 decompression stop
request (request ID 0x0412).

G.711 Compression
Stopped Status
Message

This status is issued if the compression task was stopped by a G.711 compression stop
request (request ID 0x0414).

Tone Generation
Status

This message is issued when the tone duration has elapsed. It is not issued if the tone was
stopped by a tone generation stop request (request ID 0x0802).

Table 24. G.723.1 Decoding Stopped Status Message

Word 0 0x0001 Message length = 0x0001

Word 1 0x8402 Status ID = 0x8402

Table 25. G.723.1 Encoding Stopped Status Message

Word 0 0x0001 Message length = 0x0001

Word 1 0x8404 Status ID = 0x8404

Table 26. G.711 Decompression Stopped Status Message

Word 0 0x0001 Message length = 0x0001

Word 1 0x8412 Status ID = 0x8412

Table 27. G.711 Compression Stopped Status Message

Word 0 0x0001 Message length = 0x0001

Word 1 0x8414 Status ID = 0x8414

Table 28. Tone Generation Status Message

Word 0 0x0001 Message length = 0x0001

Word 1 0x8802 Status ID = 0x8802
13
1777A–11/01

AT75C1210
Device Driver

The AT75C1210 software module is supplied with device driver for uClinux. This device driver
enables the application developer to integrate all the AT75C1210 functionality into the uClinux
kernel. All the features of the AT75C1210 modules can be accessed through the standard
uClinux API. This section documents this API.

Under uClinux, the device drivers are accessed through filesystem entries. The AT75C1210
device driver is a character type driver. The associated virtual file can be opened, read from,
written to and closed like any regular file. The major role of the device driver is to redefine the
file access methods, so that the application can interact with the underlying device as if it were
a file through the standard file manipulation functions. It provides the application with an
abstraction layer which hides the low level interface on top of which it sits.

The AT75C1210 device driver is operated through the /dev/g723 filesystem. It is used for
G.723.1 operations.

G.723.1 Driver
Operations

The G.723.1 driver redefines the following file manipulation functions:

• int open(const char *path, int flags, mode_t mode);

• int read(int fd, void *buf, int count);

• int write(int fd, void *buf, int count);

• int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval
*timeout);

• int close(int fd);

Additionally, the ioctl function allows control of additional features of the AT75C1210 that are
not accessible with the read or write methods. Those special commands are described below.
The prototype of the ioctl function is:

• int ioctl(int fd, int request, char *argp);

Open Method

Synopsis #include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int flags);

Description The /dev/g723 virtual file must be opened prior to any operation on the G.723 device driver.
This is done with the open method, just like for any regular file. The main operation performed
by the open method of the device driver is to load and initialize the corresponding DSP soft-
ware in the DSP subsystem.

When this initialization is successful, the open system call converts the file path name
(“/dev/g723” in this case) into a file descriptor. This file descriptor is a non-negative integer that
is used in subsequent I/O operations such as with read, write, etc.

flags is one of O_RDONLY, O_WRONLY or O_RDWR which request opening the file read-
only, write-only or read/write, respectively.

flags may also be bitwise-or’d with O_NONBLOCK. In this case, neither the open nor any sub-
sequent operation on the file descriptor which is returned causes the calling process to wait.
14 AT75C1210 G.723.1
1777A–11/01

AT75C1210 G.723.1
Return Values Open return the new file descriptor, or -1 if an error occurred. In the latter case, the global vari-
able errno is set appropriately to reflect the cause of error. Possible values of errno are:

• ENODEV: this indicates that the underlying hardware does not exist or is not supported.
One reason can be a corruption of the binary DSP software which could not be loaded into
the DSP subsystem.

• EBUSY: the underlying hardware is busy. Most probably there is another process using
the same resource.

• ENOMEM: a memory allocation requested by the driver failed. This happens when the
system memory is full.

Example int fd = open("/dev/g723", O_RDWR | O_NONBLOCK);

This opens the G.723 device driver in read/write mode. It selects non blocking I/O for read and
write operations. The file descriptor is returned in fd. If fd is positive, the G.723 device is
readily available for read and write operations.

Close Method

Synopsis #include <unistd.h>

int close(int fd);

Description When the G.723 device is not needed any longer by the application, it can be closed to
release system resources. This is done through the close method. The parameter is the file
descriptor of the file to be closed.

Return Values Close returns 0 on success, or -1 if an error occurred. In the latter case the global variable
errno is set appropriately to reflect the cause of error. The only possible value for errno is
EBADF which means that fd is not a valid file descriptor.

Example close(fd);

This closes the G.723 device previously opened.

Read Method

Synopsis #include <unistd.h>

int read(int fd, void *buf, int count);

Description As for any file descriptor, the read method attempts to read count bytes from fd into the buffer
starting at buf. When fd is a file descriptor attached to /dev/g723, the bytes read correspond to
the frame recognized by the G.723 decoding device.

Both blocking and non-blocking reads are supported. In blocking mode, read returns only
when there is a G.723 frame available to read. Although the process is blocked, it is safely put
on a system wait queue and does not consume CPU time.

In non-blocking mode, the read function returns immediately even if no data is available. In
this case the return value is -1 and errno is set to EAGAIN.
15
1777A–11/01

Return Values On success, the number of bytes read is returned. It is not an error if this number is smaller
than the number of bytes requested. This may happen for example because fewer bytes are
actually available at the time, or because read was interrupted by a signal.

On error, -1 is returned and errno is set appropriately. Possible values for errno are as follows:

• EAGAIN: non-blocking I/O has been selected using O_NONBLOCK and no data was
immediately available.

• EBADF: fd is not a valid descriptor.

• EINVAL: the /dev/g723 file was not open for reading.

• EFAULT: buf is outside the accessible address space.

Example ret = read(fd,buf,256);

This reads at most 256 bytes from file descriptor fd (assumed here to be related to /dev/g723),
and stores them into the memory location pointed to by buf.

Write Method

Synopsis #include <unistd.h>

int write(int fd, void *buf, int count);

Description As for any file descriptor, the write method attempts to write count bytes from the buffer start-
ing at buf to the file descriptor fd. When fd is a file descriptor attached to /dev/g723, the bytes
written correspond to the G.723 frame which is to be emitted by the G.723 device.

Both blocking and non-blocking writes are supported. In blocking mode, write returns only
when the G.723 device is ready to accept data. Although the process is blocked, it is safely put
on a system wait queue and does not consume CPU time.

In non-blocking mode, the write function returns immediately even if no data is available. In
this case the return value is -1 and errno is set to EAGAIN. In most cases the application
retries to write until the entire data set is transferred.

Return Values On success, the number of bytes written is returned. This corresponds to the number of G.723
bytes actually emitted. It is not an error if this number is smaller than the number of bytes
requested. This may happen for example because fewer bytes are actually acceptable at the
time due to lack of memory, or because write was interrupted by a signal.

On error, -1 is returned and errno is set appropriately. Possible values for errno are as follows:

• EAGAIN: non-blocking I/O has been selected using O_NONBLOCK and no data was
immediately available.

• EBADF: fd is not a valid descriptor.

• EINVAL: the /dev/g723 file was not open for reading.

• EFAULT: buf is outside the accessible address space.

Example ret = write(fd,buf,256);

This writes at most 256 bytes to file descriptor fd (assumed here to be related to /dev/g723),
from the memory location pointed to by buf.
16 AT75C1210 G.723.1
1777A–11/01

AT75C1210 G.723.1
Ioctl Method

Synopsis #include <sys/ioctl.h>

int ioctl(int fd, int request, char *argp);

Description The ioctl function manipulates the underlying device parameters of the G.723 device.

fd is the file descriptor upon which ioctl acts. It is related to the /dev/g723 virtual file.

request defines which predefined command to send to the G.723 device. Some commands
may require additional arguments which are stored or received in the buffer pointed to by argp.
The ioctl requests supported by the G.723 device driver are described below:

• G723_START_PLAYBACK: This command is used to start the G.723 playback. There is
no additional argument.

• G723_STOP_PLAYBACK: This command is used to stop the G.723 playback. There is no
additional argument.

• G723_START_RECORD: This command is used to start the G.723 record. There is no
additional argument.

• G723_STOP_RECORD: This command is used to stop the G.723 record. There is no
additional argument.

• G723_CONFIG: This command is used to configure the characteristics of the G.723
vocoder algorithm. An additional parameter is used as defined below:

struct config_args {

unsigned short enc_rate;

unsigned short dec_rate;

unsigned short vad_cng;

unsigned short mic_gain;

unsigned short spk_gain;

};

The fields and the values to be written are those defined in the section on “Low-level Interface”
on page 3.

Example struct config_args {

unsigned short enc_rate;

unsigned short dec_rate;

unsigned short vad_cng;

unsigned short mic_gain;

unsigned short spk_gain;

} *g723_conf;

g723_conf->enc_rate=0;//6.3 rate for coder

g723_conf->dec_rate=0;//6.3 rate for decoder

g723_conf->vad_cng=0;//no VAD/CNG

g723_conf->mic_gain=4096;//micro gain 0dB under reference

g723_conf->spk_gain=4096;//speaker gain 0dB under reference

ioctl(g723, G723_CONFIG, g723_conf);

This configures the G.723 algorithm.
17
1777A–11/01

Installation For versions of the siap_uClinux previous to 2.0, the installation of the AT75C1210 software is
as follows:

Change directory to siap-uClinux-1.x.y/ and launch patch_AT75C1210. It carries out
the following actions:

• Add g723.bin DSP binary in the prods/dk020/romdisk/romdisk/lib/ directory.

• Add voice/ demo sources subdirectory in apps/ directory

• Add g723/ driver subdirectory in linux/arch/armnommu/driver/ directory

• Modify various configuration files

After it ends, change directory to linux/ and type:
> make xconfig

This updates the configuration according to the file modification. Verify that the “G.723.1 sup-
port” item is correctly set to “y”. Afterwards clean and rebuild your uClinux distribution.

For versions 2.0 and higher, the driver is already installed.

Application
Example

Synopsis #include <asm/messages.h>

The demo application delivered with AT75C1210 driver illustrates its capabilities.

Start a G.723
Recording

On the board type:
> voice -rec <your_file>

This opens the G.723 device and records about 10 seconds of voice.

Start a G.723 Playback On the board type:
> voice -play <your_file>

This opens the G.723 device and plays back the specified file.
18 AT75C1210 G.723.1
1777A–11/01

© Atmel Corporation 2001.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Product Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-7658-3000
FAX (33) 4-7658-3480

Atmel Heilbronn
Theresienstrasse 2
POB 3535
D-74025 Heilbronn, Germany
TEL (49) 71 31 67 25 94
FAX (49) 71 31 67 24 23

Atmel Nantes
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 0 2 40 18 18 18
FAX (33) 0 2 40 18 19 60

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Atmel Smart Card ICs
Scottish Enterprise Technology Park
East Kilbride, Scotland G75 0QR
TEL (44) 1355-357-000
FAX (44) 1355-242-743

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

 Printed on recycled paper.

Atmel® is the registered trademark of Atmel; SIAP™ is the trademark of Atmel.

ARM® and ARM7TDMI® are registered trademarks of ARM Ltd.; OakDSPCore® is a registered trademark of
DSP Group Inc.; uClinux® is the registered trademark of Lineo Inc. Other terms and product names may be the
trademarks of others.

1777A–11/01/0M

	Features
	Overview
	Functional Description
	G.723.1 Dual Rate Vocoder
	VAD/CNG
	G.711 µ-law and A- law Voice Compression
	Tone Generator

	Low-level Interface
	Voice Module Upload
	Upload Process
	Binary Image Format

	DPMB Configuration
	Mailbox Access
	ARM-to-Oak Mailboxes
	Oak-to-ARM Mailboxes

	Mailbox Usage
	Mailbox 0: TX Encoded Voice Data
	Mailbox 1: RX Encoded Voice Data
	Mailbox 2: Oak Memory Access
	Mailbox 6: Request Notification
	Mailbox 7: Status Notification

	TX/RX Encoded Voice Data
	Oak Memory Access
	Request Notification Messages
	G.723.1 Configuration Request
	G.723.1 Decoding Start Request
	G.723.1 Decoding Stop Request
	G.723.1 Encoding Start Request
	G.723.1 Encoding Stop Request
	G.711 Configuration Request
	G.711 Decompression Start Request
	G.711 Decompression Stop Request
	G.711 Compression Start Request
	G.711 Compression Stop Request
	Tone Generation Configuration Request
	Tone Generation Start Request
	Tone Generation Stop Request

	Status Notification Messages
	Data Initialization Status
	Voice Module Initialization Status
	Bad Format Status
	Unknown Request Status
	Bad Parameter Status
	Bad Speech Frame Status
	Underrun Status
	G.723.1 Decoding Stopped Status Message
	G.723.1 Encoding Stopped Status Message
	G.711 Decompression Stopped Status Message
	G.711 Compression Stopped Status Message
	Tone Generation Status

	AT75C1210 Device Driver
	G.723.1 Driver Operations
	Open Method
	Synopsis
	Description
	Return Values
	Example

	Close Method
	Synopsis
	Description
	Return Values
	Example

	Read Method
	Synopsis
	Description
	Return Values
	Example

	Write Method
	Synopsis
	Description
	Return Values
	Example

	Ioctl Method
	Synopsis
	Description
	Example

	Installation
	Application Example
	Synopsis
	Start a G.723 Recording
	Start a G.723 Playback

