

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	93XX (U.L.) HIGH/LOW	93L (U.L.) HIGH/LOW
$\overline{\mathrm{E}}$	Enable Input (Active LOW)	$2.0 / 2.0$	$1.0 / 0.5$
$\mathrm{~A}_{0}-\mathrm{A}_{4}$	Word A Parallel Inputs	$2.0 / 2.0$	$1.0 / 0.5$
$\mathrm{~B}_{0}-\mathrm{B}_{4}$	Word B Parallel Inputs	$2.0 / 2.0$	$1.0 / 0.5$
$\mathrm{~A}<\mathrm{B}$	A Less than B Output (Active HIGH)	$20 / 10$	$10 / 5.0$
A > B			(3.0)
	A Greater than B Output (Active HIGH)	$20 / 10$	$10 / 5.0$
A B B			(3.0)
	A Equal to B Output (Active HIGH)	$20 / 10$	$10 / 5.0$

FUNCTIONAL DESCRIPTION - The '24 5-bit comparators use combinational circuitry to directly generate " A greater than B " and "A less than B " outputs. As evident from the logic diagram, these outputs are generated in only three gate delays. The "A equals B " output is generated in one additional gate delay by decoding the " A neither less than nor greater than B" condition with a NOR gate. All three outputs are activated by the active LOW Enable Input ($\overline{\mathrm{E}}$).

Tying the $A>B$ output from one device into an A input on another device and the $A<B$ output into the corresponding B input permits easy expansion.

The A_{4} and B_{4} inputs are the most significant inputs and A_{0}, B_{0} the least significant. Thus if A_{4} is $H I G H$ and B_{4} is LOW, the $A>B$ output will be $H I G H$ regardless of all other inputs except \bar{E}.

LOGIC SYMBOL

TRUTH TABLE

INPUTS		OUTPUTS		
\bar{E}	$A_{n} \quad B_{n}$	$A<B$	$A>B$	$A=B$
H	$X \quad X$	L	L	L
L	Word $A=$ Word B	L	L	H
L	Word $A>$ Word B	L	H	L
L	Word $B>$ Word A	H	L	L

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Level
$X=$ Immaterial

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER	93XX		93L		UNITS	CONDITIONS
		Min	Max	Min	Max		
Icc	Power Supply Current		81		21	mA	$\mathrm{Vcc}=\mathrm{Max}$

AC CHARACTERISTICS: $V_{C C}=+5.0 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER	93XX	93L	UNITS	CONDITIONS
		$C_{L}=15 \mathrm{pF}$	$C_{L}=15 \mathrm{pF}$		
		Min Max	Min Max		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay \bar{E} to $A=B$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	32 35	ns	Figs. 3-1, 3-4
tPLH tPHL	Propagation Delay A_{2} to $A>B$	25	54 75	ns	Figs. 3-1, 3-5
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay A_{2} to $A<B$	$\begin{aligned} & 26 \\ & 21 \end{aligned}$	70 77	ns	Figs. 3-1, 3-4
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay A_{2} to $A=B$	30 32	100 102	ns	Figs. 3-1, 3-20

