9322
 93L22
 QUAD 2-INPUT MULTIPLEXER

DESCRIPTION - The '22 quad 2-input digital multiplexers consist of four multiplexing circuits with common select and enable logic; each circuit contains two inputs and one output.

- MULTIFUNCTION CAPABILITY
- ON-CHIP SELECT LOGIC DECODING
- FULLY BUFFERED OUTPUTS

ORDERING CODE: See Section 9

PKGS	$\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$	COMMERCIAL GRADE	MILITARY GRADE	$\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{VCC}=+5.0 \mathrm{~V}, \pm 10 \% \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	
Plastic DIP (P)	A	9322PC, 93L22PC		9B
Ceramic DIP (D)	A	9322DC, 93L22DC	9322DM, 93L22DM	6B
Flatpak (F)	A	9322FC, 93L22FC	9322FM, 93L22FM	4L

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	93XX (U.L.) HIGH/LOW	93L (U.L.) HIGH/LOW
S	Common Select Input	1.0/1.0	0.5/0.25
\bar{E}	Enable Input (Active LOW)	1.0/1.0	0.5/0.25
$10 a-10 d\}$	Multiplexer Inputs	1.0/1.0	0.5/0.25
$\mathrm{Za}_{\mathrm{a}}-\mathrm{Z}_{\mathrm{d}}$	Multiplexer Outputs	20/10	$\begin{array}{r} 10 / 5.0 \\ (3.0) \end{array}$

LOGIC SYMBOL

Vcc $=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

FUNCTIONAL DESCRIPTION - The '22 quad 2-input multiplexer provides the ability to select four bits of either data or control from two sources, in one package. The Enable input (\bar{E}) is active LOW. When not activated all outputs $\left(Z_{n}\right)$ are LOW regardless of all other inputs.

The ' 22 quad 2-input multiplexer is the logical implementation of a four-pole, two position switch, with the position of the switch being set by the logic levels supplied to the one select input. The logic equations for the outputs are shown below:

$$
\begin{array}{ll}
Z_{a}=E \bullet\left(I_{1 a} \bullet S+l_{0 a} \bullet \bar{S}\right) & Z_{b}=E \bullet\left(I_{1 b} \bullet S+l_{0 b} \bullet \bar{S}\right) \\
Z_{c}=E \bullet\left(I_{1 c} \bullet S+l_{0 c} \bullet \bar{S}\right) & Z_{d}=E \bullet\left(I_{1 d} \bullet S+l_{0 d} \bullet \bar{S}\right)
\end{array}
$$

A common use of the ' 22 is the moving of data from a group of registers to four common output busses. The particular register from which the data comes is determined by the state of the selectinput. A less obvious use is as a function generator. The ' 22 can generate four functions of two variables with one variable common. This is useful for implementing random gating functions.

TRUTH TABLE

INPUTS				OUTPUT
\bar{E}	S	IOn	In	Zn
H	X	X	X	L
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

$H=$ HIGH Voltage Level $\mathrm{L}=$ LOW Voltage Level $x=$ Immaterial

LOGIC DIAGRAM

