9314
 93 L 14
 QUAD LATCH

DESCRIPTION - The '14 is a multifunctional 4-bit latch designed for general purpose storage applications in high speed digital systems. All outputs have active pull-up circuitry to provide high capacitance drive and to provide low impedance in both logic states for good noise immunity.

- CAN BE USED AS SINGLE INPUT D LATCHES OR SET/RESET LATCHES
- ACTIVE LOW ENABLE GATE INPUT
- OVERRIDING MASTER RESET

ORDERING CODE: See Section 9

PKGS	$\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$	COMMERCIAL GRADE	MILITARY GRADE	$\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$
		$\begin{aligned} & \mathrm{VCC}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 5 \%, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{VCC}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	
Plastic DIP (P)	A	9314PC, 93L14PC		9B
Ceramic DIP (D)	A	9314DC, 93L14DC	9314DM, 93L14DM	6B
Flatpak (F)	A	9314FC, 93L14FC	9314FM, 93L14FM	4L

CONNECTION DIAGRAM

LOGIC SYMBOL

$\mathrm{Vcc}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	93XX (U.L.) HIGH/LOW	93L (U.L.) HIGH/LOW
$\overline{\mathrm{E}}$	Enable Input (Active LOW)	$1.0 / 1.0$	$0.5 / 0.25$
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data Inputs	$1.5 / 1.5$	$0.75 / 0.375$
$\mathrm{~S}_{0}-\bar{S}_{3}$	Set Inputs (Active LOW)	$1.0 / 1.0$	$0.5 / 0.25$
MR	Master Reset Input (Active LOW)	$1.0 / 1.0$	$0.5 / 0.25$
$\mathrm{Q}_{0}-Q_{3}$	Latch Outputs	$20 / 10$	$10 / 5.0$
			(3.0)

FUNCTIONAL DESCRIPTION - The '14 consists of four latches with a common active LOW Enable input and active LOW Master Reset input. When the Enable goes HIGH, data present in the latches is stored and the state of the latch is no longer affected by the \bar{S}_{n} and D_{n} inputs. The Master Reset when activated overrides all other input conditions forcing all latch outputs LOW. Each of the four latches can be operated in one of two modes:

D-TYPE LATCH - For D-type operation the $\overline{\mathrm{S}}$ input of a latch is held LOW. While the common Enable is active the latch output follows the D input. Information present at the latch output is stored in the latch when the Enable goes HIGH.

SET/RESET LATCH - During set/reset operation when the common Enable is LOW a latch is reset by a LOW on the D, input, and can be set by a LOW on the \bar{S} input if the D input is HIGH. It both \bar{S} and D inputs are LOW, the D input will dominate and the latch will be reset. When the Enable goes HIGH, the latch remains in the last state prior to disablement. The two modes of latch operation are shown in the Truth Table.

TRUTH TABLE

$\overline{M R}$	\bar{E}	D	\bar{S}	Q_{n}	OPERATION
H	L	L	L	L	D MODE
H	L	H	L	H	
H	H	X	X	Q_{n-1}	
H	L	L	L	L	R/S MODE
H	L	H	L	H	
H	L	L	H	L	
H	L	H	H	Q_{n-1}	
H	H	X	X	Q_{n-1}	
L	X	X	X	L	RESET

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Level
$x=$ Immaterial
$Q_{n-1}=$ Previous Output State
$Q_{n}=$ Present Output State

LOGIC DIAGRAM

SYMBOL	PARAMETER	93XX	93L	UNITS	CONDITIONS
		Min Max	Min Max		
Icc	Power Supply Current	55	16.5	mA	$\mathrm{Vcc}=\mathrm{Max}$

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER	93XX	93L	UNITS	CONDITIONS
		$C_{L}=15 \mathrm{pF}$	$C_{L}=15 \mathrm{pF}$		
		Min Max	Min Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tpht } \end{aligned}$	Propagation Delay \bar{E} to Q_{n}	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 45 \\ & 36 \end{aligned}$	ns	Figs. 3-1, 3-9
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay D_{n} to Q_{n}	$\begin{aligned} & 12 \\ & 24 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	ns	Figs. 3-1, 3-5
tPLH	Propagation Delay $\overline{M R}$ to Q_{n}	18	30	ns	Figs. 3-1, 3-16
tPHL	Propagation Delay \bar{S}_{n} to Q_{n}	24	33	ns	Figs. 3-1, 3-16

AC OPERATING REQUIREMENTS: $\mathrm{V} c \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	93XX		93L		UNITS	CONDITIONS
		Min	Max	Min	Max		
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	$\begin{aligned} & \text { Setup Time HIGH or LOW } \\ & D_{n} \text { to } \bar{E} \end{aligned}$	$\begin{array}{r} 5.0 \\ 18 \end{array}$		$\begin{aligned} & 10 \\ & 20 \end{aligned}$		ns	Fig. 3-13
$\begin{aligned} & \operatorname{tn}(H) \\ & \operatorname{tn}(L) \end{aligned}$	Hold Time HIGH or LOW D_{n} to $\overline{\mathrm{E}}$	$\begin{array}{r} 0 \\ 5.0 \end{array}$		$\begin{array}{r} 0 \\ 10 \end{array}$		ns	
ts (H)	Setup Time HIGH, D_{n} to $\overline{\mathrm{S}}_{\mathrm{n}}$	8.0		15		ns	Fig. 3-13
th (L)	Hold Time LOW, D_{n} to \bar{S}_{n}	8.0		5.0		ns	
$t_{w}(L)$	\bar{E} Pulse Width LOW	18		30		ns	Fig. 3-9
$t_{w}(L)$	$\overline{\text { MR Pulse Width LOW }}$	18		25		ns	Fig. 3-16
$t_{\text {rec }}$	Recovery Time, $\overline{\mathrm{MR}}$ to $\overline{\mathrm{E}}$	0		5.0		ns	Fig. 3-16

