INTEGRATED CIRCUITS # DATA SHEET For a complete data sheet, please also download: - The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications - The IC06 74HC/HCT/HCU/HCMOS Logic Package Information - The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines # **74HC/HCT244**Octal buffer/line driver; 3-state Product specification File under Integrated Circuits, IC06 December 1990 ## Octal buffer/line driver; 3-state #### **74HC/HCT244** #### **FEATURES** · Output capability: bus driver I_{CC} category: MSI #### **GENERAL DESCRIPTION** The 74HC/HCT244 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT244 are octal non-inverting buffer/line drivers with 3-state outputs. The 3-state outputs are controlled by the output enable inputs 1OE and 2OE. A HIGH on nOE causes the outputs to assume a high impedance OFF-state. The "244" is identical to the "240" but has non-inverting outputs. #### **QUICK REFERENCE DATA** GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$ | SYMBOL | PARAMETER | CONDITIONS | TYPICAL | | UNIT | |-------------------------------------|---|---|---------|-----|------| | STIVIBUL | | | нс | нст | DINI | | t _{PHL} / t _{PLH} | propagation delay 1A _n to 1Y _n ; 2A _n to 2Y _n | C _L = 15 pF; V _{CC} = 5 V | 9 | 11 | ns | | C _I | input capacitance | | 3.5 | 3.5 | pF | | C _{PD} | power dissipation capacitance per buffer | notes 1 and 2 | 35 | 35 | pF | #### **Notes** 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW): $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz f_o = output frequency in MHz $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$ C_L = output load capacitance in pF V_{CC} = supply voltage in V 2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 V$ #### **ORDERING INFORMATION** See "74HC/HCT/HCU/HCMOS Logic Package Information". # Octal buffer/line driver; 3-state # 74HC/HCT244 #### **PIN DESCRIPTION** | PIN NO. | SYMBOL | NAME AND FUNCTION | | |----------------|------------------------------------|----------------------------------|--| | 1 | 1 OE | output enable input (active LOW) | | | 2, 4, 6, 8 | 1A ₀ to 1A ₃ | data inputs | | | 3, 5, 7, 9 | 2Y ₀ to 2Y ₃ | bus outputs | | | 10 | GND | ground (0 V) | | | 17, 15, 13, 11 | 2A ₀ to 2A ₃ | data inputs | | | 18, 16, 14, 12 | 1Y ₀ to 1Y ₃ | bus outputs | | | 19 | 2 OE | output enable input (active LOW) | | | 20 | V _{CC} | positive supply voltage | | # Octal buffer/line driver; 3-state # 74HC/HCT244 #### **FUNCTION TABLE** | INP | UTS | OUTPUT | |-----|-----------------|-----------------| | nOE | nA _n | nY _n | | L | L | L | | L | Н | Н | | H | X | Z | #### Note 1. H = HIGH voltage level L = LOW voltage level X = don't care Z = high impedance OFF-state