

ADVANCE SPECIFICATION

DESCRIPTION

The 2530 is a high speed 4,096-bit Static Read-Only Memory available in a 512x8 organization. This device has TTL compatible inputs and outputs and requires +5V and -12V power supplies. A READ input controls the entry of data from the ROM into output latches. Three-state outputs allow OR tying for implementing larger memories. Two OUTPUT-ENABLES control the eight output devices without affecting address circuitry.

FEATURES

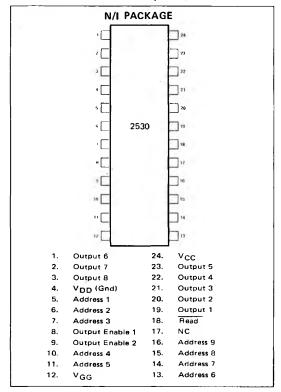
- 512x8 ORGANIZATION
- 625ns TYPICAL ACCESS TIME
- STATIC OPERATION
- ADDRESS LATCHES
- TTL/DTL COMPATIBLE INPUTS
- TTL/DTL COMPATIBLE THREE STATE OUTPUTS
- V_{CC} = +5V, V_{GG} = −12V
- 24-PIN SILICONE DIP
- SIGNETICS P-MOS SILICON GATE PROCESS TECHNOLOGY

APPLICATIONS
MICRO-PROGRAMMING
CODE-CONVERSION

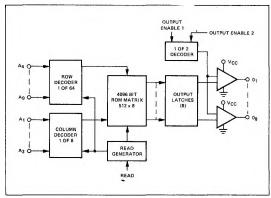
BIPOLAR COMPATIBILITY

All inputs of the 2530 can be driven directly by standard bipolar integrated circuits, (TTL, DTL, etc.). The data output buffers are capable of sinking a minimum of 1.6mA sufficient to drive one standard TTL load.

STANDARD TRUTH TABLES


The 2530NX/CM3530 is an ASCII-EBCDIC and EBCDIC-ASCII code converter. Use this device for evaluation or for applications requiring this conversion. Other standards will be announced as they become available.

PART IDENTIFICATION


PART	OP. TEMP. RANGE	PACKAGE		
2530N	0-70°C	24-Pin Silicone DIP		
25301	0-70°C	24-Pin Ceramic DIP		

SILICON GATE MOS 2500 SERIES

PIN CONFIGURATION (Top View)

BLOCK DIAGRAM

CUSTOM TRUTH TABLES

See page 7-196.

MAXIMUM GUARANTEED RATINGS (1)

Operating Ambient Temperature

0°C to 70°C -65°C to +150°C Package Power Dissipation² @ 70°C

730mW +0.3 to -20V

Input³ and Supply Voltages with respect to VCC

Storage Temperature

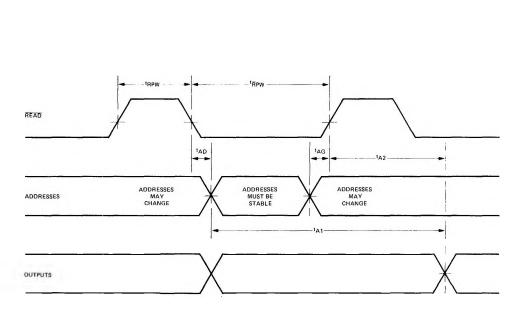
DC CHARACTERISTICS

 $T_{\Delta}=0^{\circ}$ to $+70^{\circ}$ C, $V_{CC}=+5V$; $V_{GG}=-12V\pm5\%$; unless otherwise noted. (See notes 4,5,6,7)

SYMBOL	TEST	MIN	TYP	MAX	UNIT	CONDITIONS
ILI	Input Load Current		10	500	nA	$V_{1N} = -5.5V$ $T_A = 25^{\circ}C$
ILO	Output Leakage Current		10	1000	nA	V _{OUT} = 0V T _A = 25°C
		ĺ				ACE = ACC
^I CC	VCC Power Supply Current		30	45	mA_	(8)
IGG	VGG Power Supply Current		30	45	mA	(8)
VIL	Input Logic "0"	-5		1.05	V	
VIH	Input Logic "1"	3.2		5.3	V	
			}			

AC CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $70^{\circ}C$; $V_{CC} = 5V \pm 5\%$, $V_{GG} = -12V \pm 5\%$ unless otherwise noted.


SYMBOL	TEST	MIN	TYP	MAX	UNIT	CONDITIONS
V _{OH}	Output Logic "zero"			0.8	V	One TTL Load
VOH	Output Logic "one"	3.0			V	One TTL Load
t _{RPW} 11	Read Pulse Width	250	200		ns	
tRPW10	Read Pulse Width	500	400		ns	
^t AD	Address Delay Time (12)			50	ns	
^t AG	Address-Read Pulse Gap (12)			50	ns	
^t A1	Address to Output Delay		625	700	ns	(9)
^t A2	End of Read Pulse to Output Delay		200	250		(9)
CIN	Address Input Capacitance			10	pF	- f = 1MHz,
^t OE	Output Enable to Output Delay		100	250	ns	V _{AC} = 25mV p-p V _{IN} = V _{CC}

NOTES:

- 1. Stresses above those listed under "Maximum Guaranteed Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
- 2. For operating at elevated temperatures the device must be derated based on a +150°C maximum junction temperature and a thermal resistance of 110° C/W junction to ambient.
- 3. All inputs are protected against static charge
- 4. Parameters are valid over operating temperature range unless specified.
- 5. All voltage measurements are referenced to ground.
- 6. Manufacturer reserves the right to make design and process changes and improvements.

- 7. Typical values are at +25°C and nominal supply voltages.
- 8. Outputs Open, t_{RPW} = 250ns, t_{RPW} = 500ns.
- 9. t_A = 0°C to +70°C
- 10. During tape data is clocked into the output latches and the address decoders are precharged in preparation for the next cvcle.
- 11, During tape addresses are decoded and sent to the memory matrix; and the stored memory data is moved to the data inputs of the output RS latches. This data is clocked into the output latches at the end (rising edge) of the READ pulse. After tA2, data appears at the output terminals.
- 12. Addresses must be stable within 50ns after the READ line falls and must remain stable until at least 50ns before the READ line goes high.

TIMING DIAGRAM

Note: All times measured from 50% points, for all input waveforms tr = t_f <10nsec.