

DUAL 3-INPUT 10111 3-OUTPUT NOR GATE

10111B,F: -30 to +85°C

DIGITAL 10,000 SERIES ECL

LOGIC DIAGRAM

TEMPERATURE RANGE

• -30 to +85°C Operating Ambient

PACKAGE TYPE

- B: 16-Pin Silicone DIP
- F: 16-Pin CERDIP

The 10111 is a dual high speed 3-input 3-output NOR gate. The 10111 is designed to drive up to three transmission lines simultaneously. The multiple outputs of this device also allow the wire."OR"-ing of several levels of gating for minimization of gate and package count.

The ability to control three parallel lines from a single point makes the 10111 particularly useful in clock distribution applications where minimum clock skew is desired.

FEATURES

- FAST PROPAGATION DELAY = 2.4 ns TYP (ALL OUTPUTS LOADED)
- POWER DISSIPATION = 150 mW/PACKAGE TYP (NO LOAD)
- VERY HIGH FANOUT CAPABILITY - CAN DRIVE SIX 50 Ω LINES
- HIGH Z INPUTS INTERNAL 50 k Ω PULLDOWNS
- HIGH IMMUNITY FROM POWER SUPPLY VARIATIONS: VEE = $-5.2 V \pm 5\%$ RECOMMENDED
- OPEN EMITTERS FOR BUSSING AND LOGIC CAPABILITY

CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS

LECTRICAL	AL CHARACTERISTICS											TEST VOLTAGE VALUES				
at Listed Voltages and Ambient Temperatures)										Ø Test		(Volts)			1.00	
	gos anc		Temperature Temperature							mperature	VIH max	VIL min	VIHA min	VILA max	VEE	
			-30°C								-0.890	-1.890	-1.205	-1.500	-5.2	1
	Symbol									+26°C	-0.810	-1.850	-1.105	-1.475	-5.2	
		Pin Under Terl	+85°C								-0.700	-1.825	-1.035	-1,440 -	-5.2	
Characteristic Power Supply Drein Current			10111 Test Limits								TEST VOLTAGE APPLIED TO PINE LISTED BELOW:					
			-3 Min	0°C Max	Min	+25°C	Max	+Si Min	Max	Unit	Villement	Vu min	Villa min	VILA	Vee	(V _{CC}) Gind
			-	-			38	_		måde	- ITT IIMA	- in min	· Ine min	- ILO INTA	8	1 15 16
	1E Link	6.67	-	-	-	-	435	-	-	uAdc		-			8	1 15 16
	lint	5.6.7	-	-	0.6	-	-	-	-	#Adc					8	1.15.16
Logic "1" Output Voltage	VOH	2	-1.060	-0.890	-0.960	12	-0.810	-0.890	-0.700	Vdc	-	5		-	8	1.16.18
	- On	3	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0,700	Vdc	-	6	-		8	1,15,16
		4	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	-	7		-	8	1,16,16
Logic "O" Output Voltage	VOL	2	-1.890	-1.675	-1.860	T.	-1.650	-1.825	-1.015	Vdc	6	-	-	×.	8	1,15,16
		3	~1.890	-1.676	-1.850	-	-1.650	-1.825	-1.615	Vdc	6	-	-	-	8	1,15,16
		. 4	-1.890	-1.675	-1.850	-	-1.650	-1.826	-1.615	Vdc	7	-	-	1.00	8	1,15,16
Logic "1" Threshold Voltage	VOHA	2	-1.080	*	-0.980	1		-0.910	-	Vdc	-	4	L	5	8	1,16,18
		3	-1.080	-	-0.980	-	-	-0.910	-	Vdc	-	-	-	6	8	1,15,16
		4	-1.080	344	-0.980	-	-	-0.910	-	Vdc	-	-	-	7	8	1,15,16
Logic "O" Threshold Voltage	VOLA	2	-	-1.655	-	-	-1.630	-	-1.695	Vdc	-	-	6	-	8	1,16,16
		3	-	-1.665		· -	-1.630	-	-1.595	Vdc	-	-	6	-	8	1,15,16
		4	-	-1.655	-	-	-1.630	-	-1.595	Vdc	-		7	-	8	1,16,16
Switching Times ** (50-ohm load)										- A.			Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	15+ 2-	2	1.4	3.5	1.4	2.4	3.5	1.5	3.8	ns		-	5	2	8	1,15,16
	15- 2+	2		1.1	1	1	T					-		2	1.1	
	¹ 5+ 3-	3									-	-		3	1.1	
	15-3+	3									-	-		3		
	16+ 4-	4										-		4		
	15-4+	4			- T						Ge. 1	1 - E		4		
Rise Time (20% to 80%)	12+	2	1.0	1	1.1	2.2	3.5	1.2	3.8		-	-		2	11	
	13+	3							1		1.71	-		3		
	14+	4								1 1		-		4		
Fall Time (20% to 80%)	12-	2									-	-		2		
	t3-	3		- 10			30					-	34	3	1.0	2.4.5
	14-	4	l '	· ·	1 1		1 '			I '				4	1.1	

*Individually test each input using the pin connections shown.

** Unused outputs connected to a 50-ohm resistor to ground.

SWITCHING TIME TEST CIRCUIT

PROPAGATION DELAY WAVEFORMS @ 25°C

NOTES

- 1. Each ECL 10,000 series device has been designed to meet the DC specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Voltage levels will shift approximately 5 mV with an air flow of 200 linear fpm, Outputs are terminated through a 50-ohm resistor to 2.0 volts.
- 2. For AC tests, all input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be <1/4 inch from TP_{in} to input pin and TP_{out} to output pin. A 50-ohm termination to ground is located in each scope input. Unused outputs are connected to a 50-ohm resistor to ground.
- 3. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same manner.
- 4. All voltage measurements are referenced to the ground terminal, Terminals not specifically referenced are left electrically open.