# Fe Plus 60 Fe Plus 100

The Fe Plus range has been formulated in order to meet the high quality demands in high speed duplication. Fe Plus 100 provides a playing time of up to 100 minutes in cassette, making it the ideal product for all kinds of music and voice recording.

The tapes continue to uphold our manufacturing tradition of combining good quality performance and consistency.



**Audio Duplication** 



# Technical Data

# Fe Plus 60 / Fe Plus 100

| Environmental conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1. Test Co                                                                                                                                    | nditions                        |                                 |          |           |             | see note  |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|----------|-----------|-------------|-----------|-----|
| Recording head   EC Reference Head   Gap length   Track width   0.6 mm   1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Environmental                                                                                                                                 |                                 | 20 5 °C, 60 ± 15 % r.h.         |          |           |             |           |     |
| Track width 0.6 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                               |                                 | Capilo                          |          | 4,76 cm/s |             |           |     |
| Reference level   R 723 DG (BASF)   Bias definition IEC I reference bias   0,0 dB = MOL 4,3 dB   1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Recording nead                                                                                                                                | т тес кетегенсе неай            |                                 | 0        | •         |             | 1.1       |     |
| Reference tape Batch Blas definition IEC I reference bias         R 723 DG (BASF) O,0 dB = MOL 4,3 dB         1.4           Blas setting IEC I reference bias Recommended bias         0,0 dB AS6,3 S,0                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |                                 |                                 |          |           |             |           |     |
| Bias setting IEC I reference bias   0,0 dB   MOL 4,3 dB   1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                               |                                 |                                 | R        |           |             | 1.3       |     |
| Recommended bias         −1,0 dB         ΔS6,3         3,0 dB         1.5           2. Recording Performance Specifications           The table below presents the main parameters both in the IEC-I and the recommended bias settings.         Bias setting         0,0 dB         −1,0 dB           MOL <sub>315</sub> Solution of Maximum output level at 315 Hz A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                               |                                 |                                 | ` ,      |           |             | 1.4       |     |
| Recommended bias         −1,0 dB         ΔS6,3         3,0 dB         1.5           2. Recording Performance Specifications           The table below presents the main parameters both in the IEC-I and the recommended bias settings.         Bias setting         0,0 dB         −1,0 dB           MOL <sub>315</sub> Solution of Maximum output level at 1315 Hz Albit Distriction output level at 10 kHz Albit Distriction output level at 10 kHz Albit Distriction output level at 14 kHz Albit Distriction output level at 14 kHz Albit Distriction Distriction output level at 1315 Hz Albit Distriction D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bias setting IF                                                                                                                               | C. L reference bias             |                                 | 0.0 dB   | AS6.3     | 5.0 dB      |           |     |
| Bias setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                               |                                 |                                 |          |           |             | 1.5       |     |
| Bias setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2. Recordi                                                                                                                                    | ng Performance Specif           | ication                         | s        |           |             |           |     |
| Maximum output level at 315 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The table below presents the main parameters both in the IEC-I and the recommended bias settings.                                             |                                 |                                 |          |           |             |           |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bias setting                                                                                                                                  |                                 |                                 | 0,0 dB   |           | – 1,0 dB    |           |     |
| SOL <sub>1ak</sub> Saturation output level at 14 kHz         − 15,0 dB         − 12,0 dB         2.2           S <sub>315</sub> Relative tape sensitivity at 315 Hz Max. deviations from batch to batch S <sub>3,15k</sub> − 0,2 dB         0,0 dB         0,2 dB         0,2 dB         0,5 dB         2.3           S <sub>3,15k</sub> Relative tape sensitivity at 1,3 kHz         0,0 dB         0,5 dB         0,5 dB         2.3           S <sub>10k</sub> Relative tape sensitivity at 10 kHz         0,6 dB         1,0 dB         1,0 dB         1,0 dB           S <sub>10k</sub> Relative tape sensitivity at 10 kHz         0,6 dB         1,0 dB         1,5 dB         2.3           THD <sub>250</sub> Third harmonic distortion ratio at 250 nWb/m         0,6 %         0,7 %         2.4           BN <sub>1cC</sub> Bias noise level (A-curve, RMS)         − 55,0 dB         2.5         2.6           MOL <sub>315</sub> /BN <sub>1cC</sub> Signal to bias noise ratio at 315 Hz         59,0 dB         0,5 dB         2.7           P         Print through         Fe 60         57,0 dB         2.8           3. Magnetic Properties         H <sub>C</sub> Coercivity         30 kA/m         380 Oe         3.1           B <sub>1s</sub> Saturation retentivity         165 mT         165 mT         1650 G         3.2           A <sub>Pks</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MOL <sub>315</sub>                                                                                                                            | Maximum output level at 315     | Hz                              | 4,0 dB   |           | 4,0 dB      | 2.1       |     |
| S <sub>315</sub> Relative tape sensitivity at 315 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                               |                                 |                                 |          |           |             | 2.0       |     |
| Max. deviations from batch to batch         ± 0,5 dB           S <sub>3,15k</sub> Relative tape sensitivity at 3,15 kHz         0,0 dB         0,2 dB           S <sub>6,3k</sub> Relative tape sensitivity at 10 kHz         0,6 dB         1,0 dB           S <sub>10k</sub> Relative tape sensitivity at 10 kHz         0,6 dB         1,0 dB           S <sub>14k</sub> Relative tape sensitivity at 14 kHz         1,0 dB         1,5 dB           Third harmonic distortion ratio at 250 nWb/m         0,6 %         0,7 %         2.4           BN <sub>1EC</sub> Bias noise level (A-curve, RMS)         -55,0 dB         2.5           MOL <sub>315</sub> /BN <sub>1EC</sub> Signal to bias noise ratio at 315 Hz         59,0 dB         2.5           Signal to bias noise ratio at 10 kHz         48,5 dB         0,5 dB         2.7           Print through         Fe 60         57,0 dB         55,0 dB         2.8           3. Magnetic Properties           Hc         Coercivity         30 kA/m         380 Oe         3.1           B <sub>RS</sub> Saturation retentivity         740 nWb/m         74 mM/mm         3.2           4. Physical Properties         Fe Plus 60         Fe Plus 100           Base material Tape width <td colspa<="" td=""><td>SUL<sub>14k</sub></td><td>Saturation output level at 14 i</td><td>KHZ</td><td>- 15,0 dB</td><td></td><td>- 12,0 dB</td><td>2.2</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <td>SUL<sub>14k</sub></td> <td>Saturation output level at 14 i</td> <td>KHZ</td> <td>- 15,0 dB</td> <td></td> <td>- 12,0 dB</td> <td>2.2</td> | SUL <sub>14k</sub>              | Saturation output level at 14 i | KHZ      | - 15,0 dB |             | - 12,0 dB | 2.2 |
| S <sub>0.3k</sub> Relative tape sensitivity at 10 kHz         0,3 dB         0,5 dB         1,0 dB           S <sub>10k</sub> Relative tape sensitivity at 10 kHz         0,6 dB         1,0 dB         1,0 dB           S <sub>14k</sub> Relative tape sensitivity at 14 kHz         1,0 dB         ± 1,0 dB         1,5 dB           THD <sub>250</sub> Third harmonic distortion ratio at 250 nWb/m         0,6 %         0,7 %         2.4           BN <sub>1EC</sub> Bias noise level (A-curve, RMS)         − 55,0 dB         2.5           MOL <sub>315</sub> /BN <sub>1EC</sub> Signal to bias noise ratio at 315 Hz         59,0 dB         2.6           SOL <sub>10k</sub> /BN <sub>1EC</sub> S ignal to bias noise ratio at 10 kHz         48,5 dB         0,5 dB         2.7           P         Print through         Fe 60 fe 0         57,0 dB fe 100         55,0 dB         2.8           3. Magnetic Properties         H <sub>C</sub> Coercivity         30 kA/m         380 Oe 3.1         3.1           B <sub>RS</sub> Saturation retentivity         165 mT         1650 G 3.2         3.2           Φ <sub>RS</sub> Remanent saturation flux         740 nWb/m         74 mM/mm         3.3           4. Physical Properties         Fe Plus 60         Fe Plus 100           Base material Tape width         9 kg         11,5 μm         4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S <sub>315</sub>                                                                                                                              |                                 |                                 | - 0,2 dB | ± 0,5 dB  | 0,0 dB      |           |     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                               |                                 |                                 |          |           |             |           |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                               |                                 |                                 |          |           |             | 2.3       |     |
| THD $_{250}$ Third harmonic distortion ratio at 250 nWb/m 0,6 % 0,7 % 2.4 BN $_{IEC}$ Bias noise level (A-curve, RMS) -55,0 dB Signal to bias noise ratio at 315 Hz 59,0 dB 2.6 SOL $_{10K}$ /BN $_{IEC}$ Signal to bias noise ratio at 10 kHz 48,5 dB 0,5 dB 2.7 P Print through Fe 60 57,0 dB Fe 100 55,0 dB 2.8 Saturation retentivity 165 mT 1650 G Remanent saturation flux 740 nWb/m 74 mM/mm 3.3    4. Physical Properties Fe Plus 60 Fe Plus 100  Base material Tape width 3,81 mm Tolerances of tape width 4,5 $\mu$ m 7 Total thickness 4,5 $\mu$ m Total thickness 16,0 $\mu$ m 11,5 $\mu$ m 7 Total thickness 16,0 $\mu$ m 11,5 $\mu$ m 7 Total thickness 16,0 $\mu$ m 11,5 $\mu$ m 7 Feaking strength $\mu$ 16,0 $\mu$ m 11,5 $\mu$ m 4.1 Spreaking strength $\mu$ 16,0 $\mu$ m 11,5 $\mu$ m 4.1 Spreaking strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                               | Max. deviations from batch to   | batch                           |          | ± 1,0 dB  |             |           |     |
| distortion ratio at 250 nWb/m   0,6 %   0,7 %   2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S <sub>14k</sub>                                                                                                                              | Relative tape sensitivity at 14 | kHz                             | 1,0 dB   |           | 1,5 dB      |           |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | THD <sub>250</sub>                                                                                                                            |                                 |                                 |          |           |             |           |     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                               | distortion ratio at 250 nWb/m   |                                 | 0,6 %    |           | 0,7 %       | 2.4       |     |
| SOL_{10k}/BN <sub>IEC</sub> S ignal to bias noise ratio at 10 kHz 48,5 dB 0,5 dB 2.7 Print through Fe 60 57,0 dB Fe 100 55,0 dB 2.8   3. Magnetic Properties  Hc Coercivity 30 kA/m 380 Oe BRS Saturation retentivity 165 mT 1650 G 3.2 Remanent saturation flux 740 nWb/m 74 mM/mm 3.3    4. Physical Properties Fe Plus 60 Fe Plus 100  Base material Polyester 3,81 mm Tolerances of tape width 3,81 mm Tolerances of tape width 4,5 $\mu$ m Total thickness 16,0 $\mu$ m 11,5 $\mu$ m 4.1 Yield strength (F3) $\leq$ 5 N $\leq$ 9 N 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                               |                                 |                                 |          |           |             |           |     |
| Print through Fe 60 57,0 dB Fe 100 55,0 dB 2.8  3. Magnetic Properties  Hc Coercivity 30 kA/m 380 Oe 3.1 BRs Saturation retentivity 165 mT 1650 G 740 nWb/m 74 mM/mm 3.3 $\frac{1}{1}$ Remanent saturation flux 740 nWb/m 74 mM/mm 3.3 $\frac{1}{1}$ Remanent Saturation flux 740 nWb/m 74 mM/mm 4.1 Tolerances of tape width 3,81 mm Tolerances of tape width 4,5 $\frac{1}{1}$ Total thickness 4,5 $\frac{1}{1}$ Total thickness 16,0 $\frac{1}{1}$ Total thickness                        |                                                                                                                                               |                                 |                                 | 18 5 dB  | 59,0 dB   | 0 5 dB      |           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               | _                               | KIIZ                            | 40,5 db  |           | 0,5 db      | 2.7       |     |
| 3. Magnetic Properties  H <sub>C</sub> Coercivity 30 kA/m 380 Oe 3.1 B <sub>RS</sub> Saturation retentivity 165 mT 1650 G 7.4 mM/mm 3.3 $2 \times 4$ . Physical Properties  Fe Plus 60  Base material Polyester 3,81 mm Tolerances of tape width 4,5 $\mu$ m Total thickness 7 16,0 $\mu$ m 11,5 $\mu$ m 7.1 Yield strength (F3) $\geq 5 \text{ N}$ Reaking strength $\geq 9 \text{ N}$ 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Р                                                                                                                                             | Print through                   |                                 |          |           |             | 20        |     |
| H <sub>C</sub> Coercivity 30 kA/m 380 Oe $B_{RS}$ Saturation retentivity 165 mT 1650 G $\Phi_{RS}$ Remanent saturation flux 740 nWb/m 74 mM/mm 3.3 $\frac{1}{3.2}$ 4. Physical Properties Fe Plus 60 Fe Plus 100 Fe Pl                                                                                                                                                                                                                                           |                                                                                                                                               |                                 | 16 100                          |          | 55,0 dB   |             | 2.0       |     |
| B <sub>RS</sub> Saturation retentivity $\Phi_{RS}$ Remanent saturation flux $\frac{165 \text{ mT}}{740 \text{ nWb/m}} \frac{1650 \text{ G}}{74 \text{ mM/mm}} \frac{3.2}{3.3}$ 4. Physical Properties Fe Plus 60 Fe Plus 100  Base material Polyester $\frac{1}{3}$ Remanent saturation flux $\frac{1}{3}$ Remanent | 3. Magnetic Properties                                                                                                                        |                                 |                                 |          |           |             |           |     |
| $\Phi_{RS}$ Remanent saturation flux740 nWb/m74 mM/mm3.34. Physical PropertiesFe Plus 60Fe Plus 100Base material<br>Tape width<br>Tolerances of tape width<br>Coating thickness<br>Total thickness<br>Yield strength (F3)<br>Breaking strengthPolyester<br>3,81 mm<br>+0,00/-0,05 mm<br>4,5 $\mu$ m11,5 $\mu$ m16,0 $\mu$ m<br>\$\frac{1}{2}5 \text{ N}\$<br>\$\frac{1}{2}5 \text{ N}\$<br>\$\frac{1}{2}9 \text{ N}\$4.1<br>4.2<br>4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                             |                                 |                                 |          |           |             |           |     |
| 4. Physical Properties Fe Plus 60 Fe Plus 100  Base material Polyester 3,81 mm Tolerances of tape width $+0,00/-0,05$ mm Coating thickness $+0,00/-0,05$ mm Total thickness $+0,00/-0,05$ mm Total thickness $+0,00/-0,05$ mm Yield strength (F3) $+0,00/-0,05$ mm                                                                                                                                                                                                                                                              | _                                                                                                                                             |                                 | 7                               |          |           |             |           |     |
| Base material Polyester Tape width 3,81 mm Tolerances of tape width $+0,00/-0,05$ mm Coating thickness $4,5$ µm Total thickness $16,0$ µm $11,5$ µm $4.1$ Yield strength (F3) $\ge 5$ N $4.2$ Breaking strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |                                 |                                 |          | 7         |             |           |     |
| Tape width 3,81 mm  Tolerances of tape width $+0,00/-0,05$ mm  Coating thickness $4,5$ $\mu$ m  Total thickness $16,0$ $\mu$ m $11,5$ $\mu$ m $4.1$ Yield strength (F3) $\ge 5$ N $4.2$ Breaking strength $\ge 9$ N $4.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4. Physical Properties                                                                                                                        |                                 |                                 | Plus 60  |           | Fe Plus 100 |           |     |
| Tolerances of tape width $+0.00/-0.05  \text{mm}$ Coating thickness $4.5  \mu \text{m}$ Total thickness $16.0  \mu \text{m}$ $11.5  \mu \text{m}$ $4.1$ Yield strength (F3) $\geqq 5  \text{N}$ $4.2$ Breaking strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                               |                                 |                                 |          |           |             |           |     |
| Coating thickness4,5 μmTotal thickness16,0 μm11,5 μmYield strength (F3) $≥$ 5 N4.2Breaking strength $≥$ 9 N4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                             | ape width                       |                                 |          |           |             |           |     |
| Yield strength (F3) $\geq$ 5 N4.2Breaking strength $\geq$ 9 N4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Coating thickne                                                                                                                               | ess                             |                                 |          |           |             |           |     |
| Breaking strength ≥9 N 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                               |                                 |                                 | 16,0 µm  | >5 N      | 11,5 µm     |           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |                                 |                                 |          |           |             |           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Electrical resistance of magnetic coating                                                                                                     |                                 |                                 |          | ≤4 GΩ     |             |           |     |

All data represent nominal values and are subject of change without prior notice due to technical progress.

## References

# Audio Duplicator Tape

#### The data in this publication are based on test methods of IEC Publication 94, part 4 and 5.

- 1.1 Measurement method according to IEC 94, using the IEC Reference Heads.
- 1.2 Playback equalization on the tape testing equipment is aligned to provide a flat frequency response of the output voltage when playing back the frequency response section of the IEC I Calibration Tape 4,76 cm/s, time constants 120+3180 µs.
- 1.3 The reference level 250nWb/m corresponds to the reference level section of the IEC I Calibration Tape.
- 1.4 IEC I reference bias definition: Using the IEC Reference Heads and the IEC I Reference Tape, the reference bias is defined as that bias, at which the maximum output level at 315 Hz and 3 % third harmonic distortion (MOL<sub>315</sub>) equals 4,3 dB relative to reference level (Ref. 1.3).
- 1.5 Bias setting by means of a recommended sensitivity drop is common practice. Setting the recording level to about 20 dB below reference level (using a signal frequency of 6,3 kHz) the bias current is raised to such an extent that the playback level is reduced to the given value relative to maximum sensitivity.
- 2.1  $MOL_{315}$ : Maximum output level at 315 Hz relative to reference level (Ref. 1.3), characte-rized by a third harmonic distortion of 3 %.
- $2.2~SOL_{10k}$ ,  $SOL_{14k}$ : Output level at 10 kHz or 14 kHz respectively, at which saturation occurs, relative to reference level (Ref. 1.3).
- 2.3  $S_{315}$ ,  $S_{3,15k}$ ,  $S_{6,3k}$ ,  $S_{10k}$ ,  $S_{14k}$ : Relative tape sensitivities are compared to those of the reference tape. All sensitivities are measured with an audio current, which at 315 Hz produces an output of about 20 dB below reference level (Ref. 1.3).

- $2.4\ THD_{250}$ : Third harmonic distortion ratio of a 315 Hz signal at reference level (Ref. 1.3).
- 2.5 BN<sub>IEC</sub>: The bias noise level is measured after operational erasure and biasing have been applied. Measurement of BNIEC is made using a RMS meter and a weighting network according to curve "A" of IEC Publication 651.
- $2.6~MOL_{315}/BN_{IEC}$ : The signal to bias noise ratio results from the addition of the maximum output level at 315 Hz (Ref. 2.1) and the bias noise level BNIEC (Ref. 2.5).
- $2.7\ SOL_{10k}/BN_{IEC}\colon$  The signal to bias noise ratio results from the addition of the saturation output level at 10 kHz (Ref. 2.2) and the bias noise level (Ref. 2.5).
- 2.8 P: Print through is the highest signal level transferred from a reference level recording to an adjacent tape layer after 24 h storage at 20 °C.
- $3.1~H_{\rm c}$ : Coercivity is that strength of a magnetic field under whose influence the magnetization of a tape is reduced to zero after the sample has been magnetised to saturation.
- 3.2  $B_{\text{RS}}\!\!:$  Saturation retentivity specifies the remanent magnetic flux, after the tape has been subjected to saturation magnetisation.
- 3.3  $\emptyset_{\text{RS}}:$  Remanent saturation flux is the retentivity multiplied by the coating thickness.
- 4.1 Thickness: Values given are mean value.4.2 Yield strength (F3) is defined according to IEC Publication 735 as that force which is necessary to stretch the tape by 3 %.
- 4.3 Breaking tensile strength is the force to get the breaking point of a tape sample, according to IEC Publication 735.

### Recordable Media Group

P.O. Box 137 4900 AC Oosterhout The Netherlands

Telephone: +31-(0)162-40 89 50 Fax: +31-(0)162-46 26 11

e-mail info@rmgi.nl
Internet www.rmgi.nl

